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What do you expect from AI?

● Self-driving cars
● Digital assistant
● Solving hardest math problems

…



Accuracy 100% 

As a machine learning researcher, my dream is to 
achieve 

by learning from only a few examples, like what 
humans usually do



Does machine learning meet this expectation?

Semi-supervised learning
Manifold learning
Sparsity and low rank
Active learning
Transfer learning
Metalearning
Bayesian nonparametric
Kernel machines
…



What is missing in machine learning?

Reasoning

Humans can learn from only a few examples because humans can reason



We have found a simple way to solve reasoning:

Teach language models to 
reason, like teaching kids



Let’s start from a toy problem



Toy problem: last-letter-concatenation

Rule: Take the last letter of each word, and then concatenate them

Input Output

“Elon Musk” “nk”

“Bill Gates” “ls”

“Barack Obama” ?



Solve it by machine learning? Tons of labels needed

Encoder Decoder

“machine, learning”

“eg”

Would you like to call an ML method which needs tons of labels to learn a “trivial” task as AI?



How to solve this problem 
with LLMs?



LLM“AI is the” “future”

What are Large Language Models (LLMs)?

LLM is a “transformer” model trained to predict the next word 

Trained with many sentences, e.g. all texts from the Internet



You can think of training an LLM as training a 
parrot to mimic human languages 



Q: “Elon Musk”
A: “nk”

Q: “Bill Gates”
A: “ls”

Q: “Barack Obama”
A:

LLM

Input

Few-shot prompting for last-letter-concatenation 





How about adding more examples?





Why we created the last-letter-concatenation task?

● Machine learning fail
● Few-shot prompting fail
● Trivial for humans



Chain-of-Thought (CoT) Prompting

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. 
Chain-of-thought prompting elicits reasoning in large language models. NeurIPS 2022.

https://arxiv.org/abs/2201.11903


CoT: Adding “thought” before “answer”

Q: “Elon Musk”
A: the last letter of "Elon" is "n". the last letter of "Musk" is "k". Concatenating "n", "k" 
leads to "nk". so the output is "nk".

Q: “Bill Gates”
A: the last letter of "Bill" is "l". the last letter of "Gates" is "s". Concatenating "l", "s" leads 
to "ls". so the output is "ls".

Q: “Barack Obama"
A:

thought



CoT: Adding “thought” before “answer”

Q: “Elon Musk”
A: the last letter of "Elon" is "n". the last letter of "Musk" is "k". Concatenating "n", "k" 
leads to "nk". so the output is "nk".

Q: “Bill Gates”
A: the last letter of "Bill" is "l". the last letter of "Gates" is "s". Concatenating "l", "s" leads 
to "ls". so the output is "ls".

Q: “Barack Obama"
A: the last letter of "Barack" is "k". the last letter of "Obama" is "a". Concatenating "k", "a" 
leads to "ka". so the output is "ka".

thought



One demonstration is enough, as humans

Q: “Elon Musk”
A: the last letter of "Elon" is "n". the last letter of "Musk" is "k". Concatenating "n", "k" 
leads to "nk". so the output is "nk".

Q: “Barack Obama"
A: the last letter of "Barack" is "k". the last letter of "Obama" is "a". Concatenating "k", "a" 
leads to "ka". so the output is "ka".



Standard few-shot prompting

<input, output>

Chain-of-thought prompting

<input, thought, output>

Brown et al. Language Models are 
Few-Shot Learners. May, 2020

Wei et al. Chain-of-thought prompting elicits 
reasoning in large language models. Jan, 2022



Google I/O 2022



Can LLMs solve math word problems?



Let’s see how CoT magically works

There were 3 pizzas in total at the pizza shop. A customer bought one pizza. How many 
pizzas are left?
There are 3 pizzas in total and a customer bought one. So there are 3 - 1 = 2 pizzas left. 
So the answer is 2.

Elsa has 3 apples. Anna has 2 more apples than Elsa. How many apples do they have 
together?
Elsa has 3 apples and Anna has 2 more apples than Elsa. So Anna has 3 + 2 = 5 apples. 
So Elsa and Anna have 3 + 5 = 8 apples together. So the answer is 8.

Demonstration example 
with “thought”



CoT for any task



100x - 1000x data efficient than supervised sota in the literature



CoT Stands on Giants (I)

Wang Ling, Dani Yogatama, Chris Dyer, Phil Blunsom. Program Induction by Rationale Generation: Learning to Solve and Explain 
Algebraic Word Problems. ACL 2017.

Ling et al 2017 has proposed using natural language rationale to solve math 
word problems: “derive the final answer through a series of small steps”. 
Trained a sequence-to-sequence model from scratch. 

https://aclanthology.org/P17-1015.pdf
https://aclanthology.org/P17-1015.pdf


CoT Stands on Giants (II)

Cobbe et al. Training Verifiers 
to Solve Math Word Problems.  
arXiv:2110.14168 [cs.LG]. 
October 2021.

Following the work by Ling et al 2017, Cobbe et al 2021 in OpenAI built a much 
larger math word problem dataset (GSM8K) with natural language rationales,  
and using the dataset to finetuned GPT3

Problem: Ali is a dean of a private school where he teaches one class. 
John is also a dean of a public school. John has two classes in his 
school. Each class has 1/8 the capacity of Ali’s class which has the 
capacity of 120 students. What is the combined capacity of both schools?
Solution: Ali’s class has a capacity of 120 students. Each of John’s 
classes has a capacity of 120/8 = 15 students. The total capacity of 
John’s two classes is 15 students * 2 classes = 30 students. The 
combined capacity of the two schools is 120 students + 30 students = 
150 students.
Final answer: 150

https://arxiv.org/abs/2110.14168


CoT Stands on Giants (III)

Nye et al 2021 propose Scratchpad: predicting the final output of a program 
by predicting its intermediate execution result from line to line

Nye et al. Show Your Work: Scratchpads for 
Intermediate Computation with Language 
Models. arXiv:2112.00114 [cs.LG], 2021

https://arxiv.org/abs/2112.00114


Self-Consistency
Greatly improves chain-of-thought prompting

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou. 
Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023.

https://arxiv.org/abs/2203.11171




Crushed GSM8K SOTA with only 8 examples



Crushed GSM8K SOTA with only 8 examples



“We perform finetuning… GSM8K … it appears 
likely that the 175B model would require at least 
two additional orders of magnitude of training 
data to reach an 80% solve rate.”

Cobbe et al. Training Verifiers to Solve Math Word Problems. arXiv:2110.14168 
[cs.LG], 2021.

How many more examples are needed for finetuning to be 
comparable to CoT + SC?



Solve high school math problems

● Finetuning PaLM with math data
● SC + CoT solves 50%!
● Non-math graduate students 

solve: 40%

Lewkowycz et al., 2022. Solving Quantitative Reasoning 
Problems With Language Models.



“Self-consistency + chain-of-thought” crushed SOTA by large margin



Why does self-consistency work? 
Marginalization!



Self-consistency is the empirical 
implementation of marginalization. Don’t be 
superficial to interpret it as majority voting!



When there is no reasoning path, we don't 
need self-consistency, since we can directly 
choose the most likely answer using P(Y|X)! 



More consistent, more likely to be correct!



Universal Self-Consistency (USC) for Any Task

Just ask LLMs to select the 
most consistent response 
based on majority consensus! 

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan 
Xiao, Pengcheng Yin, Sushant Prakash, Charles Sutton, 
Xuezhi Wang, Denny Zhou. Universal Self-Consistency 
for Large Language Model Generation. arXiv:2311.17311 
[cs.CL], 2023.

https://arxiv.org/abs/2311.17311
https://arxiv.org/abs/2311.17311


Universal Self-Consistency (USC) for Any Task

● USC consistently improves the performance on free-form generation 
tasks, like summarization, where SC is inapplicable

● For code generation, USC matches the performance of 
execution-based SC that selects the code with the most consistent 
execution outputs, while USC does not require code execution

● For math reasoning, USC matches the performance of SC while 
eliminating the need of parsing answers to aggregate.



Least-to-Most Prompting
Enable easy-to-hard generalization by decomposition

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, 
Quoc Le, Ed Chi. Least-to-Most Prompting Enables Complex Reasoning in Large Language Models. ICLR 2023.

https://arxiv.org/abs/2205.10625


CoT fails to generalize to harder problems  

Last-letter-concatenation task with list longer than demonstration which 
is limited to 3 words:

CoT’s performance greatly drops as length increases



Key Idea of Least-to-Most Prompting

1. Decompose a complex problem into a list of easier subproblems
2. Sequentially solve these subproblems (from least to most complex)

Least-to-Most Prompting =  Planning/Sketch + Reasoning





Solve math problems by decomposition

Q: Elsa has 3 apples. Anna has 2 more apples than Elsa. How many apples do they have 
together?
A:  Let's break down this problem: 1. How many apples does Anna have? 2. How many 
apples do Elsa and Anna have together?

1. Anna has 2 more apples than Elsa.  So Anna has 2 + 3 = 5 apples. 
2. Anna has 5 apples. Elsa and Anna have 3 + 5 = 8 apples together. 

The answer is 8.

Q: Eliza's rate per hour for the first 40 hours she works each week is $10. She also receives 
an overtime pay of 1.2 times her regular hourly rate. If Eliza worked for 45 hours this week, 
how much are her earnings for this week?
A:



Solve math problems by decomposition (Cont’)
…
Q: Eliza's rate per hour for the first 40 hours she works each week is $10. She also 
receives an overtime pay of 1.2 times her regular hourly rate. If Eliza worked for 45 
hours this week, how much are her earnings for this week?
A: Let's break down this problem: 1. How much does Eliza earn for the first 40 hours 
she works each week? 2. How much does Eliza earn in overtime pay? 3. How much 
does Eliza earn in total for the week?

1. Eliza earns $10 per hour for the first 40 hours she works each week, so she earns 
$10 x 40 = $400 for those hours.
2. Eliza earns 1.2 times her regular hourly rate for overtime hours, so she earns 1.2 x 
$10 = $12 per overtime hour. Eliza worked 5 overtime hours this week, so she earned 
$12 x 5 = $60 in overtime pay.
3. Eliza's total earnings for the week are $400 + $60 = $460.
The answer is: $460



Commonsense reasoning by decomposition (StrategyQA)

Q: Can sunlight travel to the deepest part of the Black Sea?
A: Let's breakdown this problem: "What is the maximum depth of the Black 
Sea?", "How deep can sunlight penetrate a sea?", "Can sunlight travel to the 
deepest part of the Black Sea?"

1. The Black Sea has a maximum depth of 2,212 meters.
2. Sunlight does not penetrate water below 1000 meters.
3. 1000 meters is less than 2,212 meters. So sunlight cannot travel to the 
deepest part of the Black Sea
Then answer is: false.

Q: Did Aristotle use a laptop?

https://allenai.org/data/strategyqa


Commonsense reasoning by decomposition (Cont’)

…
A: Let's breakdown this problem: "When was the laptop invented?", "When 
did Aristotle live?", "Did Aristotle Use a Laptop?"

1. The laptop was invented in 1981.
2. Aristotle lived from 384 BC to 322 BC.
3. 1981 is greater than 322 BC. So Aristotle did not use a laptop.
The answer is: false.



Last-letter task (length generalization)



Teach LLMs the trick from n to n+1

Decomposition



SCAN (compositional generalization): text-to-actions

https://github.com/brendenlake/SCAN


CFQ (compositional generalization): text-to-code

Andrew Drozdov, Nathanael Schärli, Ekin Akyürek, Nathan Scales, Xinying Song, Xinyun Chen, Olivier Bousquet, Denny 
Zhou. Compositional Semantic Parsing with Large Language Models. ICLR 2023.

Using only 1% data!

https://github.com/google-research/google-research/blob/master/cfq/README.md
https://arxiv.org/abs/2209.15003


Is it possible to make one common 
prompt for all tasks?

Yes!



Magic

Any task: including tasks which are no even seen

Implementation

Too big to load?  “Store” them in “weights” ! (Of course by tuning!)

Key Idea

Making a big prompt by combining prompts from different tasks, and 
then using it for any task

 (Instruction tuning!)



FLAN2: Finetune PaLM with 1800+ tasks

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, 
Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan 
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H Chi, Jeff Dean, 
Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V Le, Jason Wei.  Scaling Instruction-Finetuned Language Models. 2022.

https://arxiv.org/abs/2210.11416


Output

Input

Task description



Output

Input

This is zero-shot!



Pretraining (next-token-prediction) + 
Instruction tuning     ChatLLM

Chat is nothing but zero-shot prompting!



Zero-Shot



LLMs as Optimizers

Yang, Chengrun, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun Chen. Large 
Language Models as Optimizers. arXiv preprint arXiv:2309.03409 (2023).

https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2309.03409


Can LLMs solve math word problems?



Let’s think step by step: zero-shot CoT

Kojima, Takeshi, et al. Large language models are zero-shot reasoners. NeurIPS (2022)



Anything better than “Let’s think step by step”?



Let LLMs optimize it!

Text: Let’s figure it out! Score: 61 

Text: Let’s solve the problem. Score: 63 

(. . . more texts and scores . . . )

Write your new text that is different from the old 
ones and has a score as high as possible. 

LLM





Results on GSM8K w/ PaLM

“Let’s think step by step” 71.8%

“Take a deep breath and work on this problem step-by-step” 80.2% 
(found by LLM optimization) 



LLMs as Analogical Reasoners

Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong Pasupat, Jure Leskovec, Percy Liang, Ed H. 
Chi, Denny Zhou. Large Language Models as Analogical Reasoners. arXiv:2310.01714 [cs.LG]

https://arxiv.org/abs/2310.01714


Instead of manually making few-shot CoT 
prompts, why not let LLMs automatically 

generate related examples?





A mathematician is a person 
who can find analogies between 
theorems; a better 
mathematician is one who can 
see analogies between proofs 
and the best mathematician can 
notice analogies between 
theories. One can imagine that 
the ultimate mathematician is 
one who can see analogies 
between analogies.     Stefan Banach







Your goal is to write Python3 code to solve competitive programming problems. Given a 
problem, explain the core concepts in it and provide other relevant problems. Then solve 
the original problem. 

# Problem: You are given a sequence a_1, a_2, …, a_n. Each element of a is 1 or 2. Find out if an 
integer k exists so that the following conditions are met. 1 ≤ k ≤ n-1, and a_1 ⋅ a_2 … a_k = a_{k+1} … 
a_n. If there exist multiple k that satisfy the given condition, print the smallest. 

# Instruction: 
## Algorithms: Identify the core concepts or algorithms used to solve the problem. 

## Tutorial: Write a tutorial about these algorithms. 

## Example Problems: Provide three examples of relevant competitive programming problems 
that involve these algorithms. For each problem, describe the problem, explain the solution in 
detail, and then write the correct Python3 code. 

## Python3 code to solve the original problem: - Explanation of the solution: - Python3 code to 
solve the problem:





Surprising findings

● The automatically generated problems are usually easier than the 
problem to solve

● The automatically generated problems may contain mistakes

Despite these, the analogical method still works so well!



Why LLMs can reason?



Reasoning as an emergent behavior

● Reasoning emerges from next-token-prediction pretraining
○ CoT is discovered, not manually designed
○ Sharp reasoning performance transition vs (#parameters, #tokens)

● Distill big models to small ones? Check performance on reasoning tasks!



“How to make parrots 
intelligent?”

“Scaling up!”

https://twitter.com/denny_zhou/status/15914518472395
32544?s=20 

https://twitter.com/denny_zhou/status/1591451847239532544?s=20
https://twitter.com/denny_zhou/status/1591451847239532544?s=20


Toward understanding in-context learning

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algorithm is in-context 
learning? Investigations with linear models.  ICLR 2023.

● Transformer models are meta-learners: implicitly learned training 
algorithms (like gradient descent) from pretraing

● In the inference time, transformer models implicitly built the 
prediction model from the inputs and then predict

https://arxiv.org/abs/2211.15661
https://arxiv.org/abs/2211.15661


Summary

● Chain-of-thought: add “thought” before final “answer”
● Self-consistency: sample repeatedly, and select the most frequent answer
● Least-to-most: decompose to subproblems and solve them one by one
● Instruction finetuning: enable zero-shot / chat
● Auto prompting (LLMs as optimizers, LLMs as analogical reasoners)
● Emergence of LLM reasoning and theory



What is next?



A model with language understanding and 
reasoning opens a door to infinite possibilities 



Conference on Language Modeling (COLM)

https://colmweb.org

https://colmweb.org/


Thank You
https://twitter.com/denny_zhou 

https://dennyzhou.github.io/  

https://scholar.google.com/citations
?user=UwLsYw8AAAAJ&hl=en 

https://twitter.com/denny_zhou
https://dennyzhou.github.io/
https://scholar.google.com/citations?user=UwLsYw8AAAAJ&hl=en
https://scholar.google.com/citations?user=UwLsYw8AAAAJ&hl=en

