
17

On Evolutionary Spectral Clustering

YUN CHI

NEC Laboratories America

XIAODAN SONG

Google Inc.

DENGYONG ZHOU

Microsoft Research

KOJI HINO

NEC Laboratories America

and

BELLE L. TSENG

YAHOO! Inc.

Evolutionary clustering is an emerging research area essential to important applications such as
clustering dynamic Web and blog contents and clustering data streams. In evolutionary clustering,
a good clustering result should fit the current data well, while simultaneously not deviate too
dramatically from the recent history. To fulfill this dual purpose, a measure of temporal smoothness
is integrated in the overall measure of clustering quality. In this article, we propose two frameworks
that incorporate temporal smoothness in evolutionary spectral clustering. For both frameworks, we
start with intuitions gained from the well-known k-means clustering problem, and then propose and
solve corresponding cost functions for the evolutionary spectral clustering problems. Our solutions
to the evolutionary spectral clustering problems provide more stable and consistent clustering
results that are less sensitive to short-term noises while at the same time are adaptive to long-
term cluster drifts. Furthermore, we demonstrate that our methods provide the optimal solutions to
the relaxed versions of the corresponding evolutionary k-means clustering problems. Performance
experiments over a number of real and synthetic data sets illustrate our evolutionary spectral
clustering methods provide more robust clustering results that are not sensitive to noise and can
adapt to data drifts.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—
Data mining; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—
Information filtering

General Terms: Algorithms, Experimentation, Measurement, Theory

Authors’ addresses: Y. Chi and K. Hino, NEC Laboratories America, 10080 North Wolfe Road, SW3-
350, Cupertino, CA 95014; X. Song, Google Inc., 1600 Amphitheatre Parkway, Mountain View, CA
94043; D. Zhou, Microsoft Research, One Microsoft Way, Redmond, WA 98052; B. L. Tseng, YAHOO!
Inc., 2821 Mission College Blvd, Santa Clara, CA 95054; Contact email: ychi@sc.nec-labs.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1556-4681/2009/11-ART17 $10.00
DOI 10.1145/1631162.1631165 http://doi.acm.org/10.1145/1631162.1631165

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

17:2 • Y. Chi et al.

Additional Key Words and Phrases: Evolutionary spectral clustering, temporal smoothness, pre-
serving cluster quality, preserving cluster membership

ACM Reference Format:

Chi, Y., Song, X., Zhou, D., Hino, K., and Tseng, B. L. 2009. On evolutionary spectral clustering.
ACM Trans. Knowl. Discov. Data 3, 2, Article 17 (November 2009), 30 pages.
DOI = 10.1145/1631162.1631165 http://doi.acm.org/10.1145/1631162.1631165

1. INTRODUCTION

In many clustering applications, the characteristics of the objects to be clus-
tered change over time. Very often, such characteristic change contains both
long-term trend due to concept drift and short-term variation due to noise.
For example, in the blogosphere where blog sites are to be clustered (e.g.,
for community detection), the overall interests of a blogger and the blogger’s
friendship network may drift slowly over time and simultaneously, short-term
variation may be triggered by external events. As another example, in an
ubiquitous computing environment, moving objects equipped with GPS sen-
sors and wireless connections are to be clustered (e.g., for traffic jam pre-
diction or for animal migration analysis). The coordinate of a moving ob-
ject may follow a certain route in the long-term but its estimated coordi-
nate at a given time may vary due to limitations on bandwidth and sensor
accuracy.

These application scenarios, where the objects to be clustered evolve with
time, raise new challenges to traditional clustering algorithms. In traditional
clustering algorithms, the main target is to partition objects into groups so that
objects within the same group are similar and those among different groups
are dissimilar. In comparison, when clustering continuously evolving objects,
some new considerations are needed. On one hand, the current clusters should
depend mainly on the current data features—aggregating all historic data fea-
tures makes little sense in non-stationary scenarios. On the other hand, the
current clusters should not deviate too dramatically from the most recent his-
tory. This is because in most dynamic applications, we do not expect data to
change too quickly and as a consequence, we expect certain levels of temporal
smoothness between clusters in successive timesteps. We illustrate this point
by using the following example. Assume we want to partition 5 blogs into 2 clus-
ters. Figure 1 shows the relationship among the 5 blogs at time t-1 and time t,
where each node represents a blog and the numbers on the edges represent the
similarities (e.g., the number of links) between blogs. Obviously, the blogs at
time t-1 should be clustered by Cut I. The clusters at time t are not so clear. Both
Cut II and Cut III partition the blogs equally well. However, according to the
principle of temporal smoothness, Cut III should be preferred because it is more
consistent with recent history (time t-1). Similar ideas have long been used in
time series analysis [Chatfield 2003] where moving averages are often used
to smooth out short-term fluctuations. Because similar short-term variances
also exist in clustering applications, either due to data noises or due to non-
robust behaviors of clustering algorithms (e.g., converging to different locally

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

On Evolutionary Spectral Clustering • 17:3

timestep: t

C

A D

EB

C

A D

EB1

4

6

2

Cut I

Cut II Cut III

5

51

1

timestep: t−1

Fig. 1. An evolutionary clustering scenario.

suboptimal modes), new clustering techniques are needed to handle evolving
objects and to obtain stable and consistent clustering results.

In this article, we propose two evolutionary spectral clustering algorithms
in which the clustering cost functions contain terms that regularize tempo-
ral smoothness. Evolutionary clustering was first formulated by Chakrabarti
et al. [2006] where they proposed heuristic solutions to evolutionary hierar-
chical clustering problems and evolutionary k-means clustering problems. In
this article, we focus on evolutionary spectral clustering algorithms under a
more rigorous framework. Spectral clustering [Bach and Jordan 2006; Chung
1997; Dhillon et al. 2004; Ding and He 2004; Shi and Malik 2000; Zha et al.
2001], which is based on top eigenvectors of matrices derived from the similar-
ity matrix of the data points, is very appealing because the eigen-decomposition
problem is a well understood topic in mathematics. In addition, spectral cluster-
ing algorithms have solid theory foundation [Chung 1997] and have shown very
good performances. They have been successfully applied to many areas such as
document clustering [Zha et al. 2001; Ji and Xu 2006], imagine segmentation
[Shi and Malik 2000; Weiss 1999], and Web/blog clustering [Ding and He 2004;
Ning et al. 2007]. Spectral clustering algorithms can be considered as solving
certain graph partition problems, where different graph-based measures are
to be optimized. Based on this observation, we define the cost functions in our
evolutionary spectral clustering algorithms by using the graph-based measures
and derive corresponding (relaxed) optimal solutions. At the same time, it has
been shown that these graph partition problems have close connections to differ-
ent variation of the k-means clustering problems. Through these connections,
we demonstrate that our evolutionary spectral clustering algorithms provide
solutions to the corresponding evolutionary k-means clustering problems as
special cases.

In summary, our main contributions in this article can be summarized as the
following:

(1) We propose two frameworks for evolutionary spectral clustering in which
the temporal smoothness is incorporated into the overall clustering quality.
To the best of our knowledge, our frameworks are the first evolutionary
versions of the spectral clustering algorithms.

(2) We derive optimal solutions to the relaxed versions of the proposed evo-
lutionary spectral clustering frameworks. Because the unrelaxed versions
are shown to be NP-hard, our solutions provide both the practical ways of

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

17:4 • Y. Chi et al.

obtaining the final clusters and the upper bounds on the performance of the
algorithms.

(3) We also introduce extensions to our algorithms to handle the case where the
number of clusters changes with time and the case where new data points
are inserted and old ones are removed over time.

The rest of the article is organized as follows: We review related work in
the rest of this Section. In Section 2, we introduce notations and necessary
background. In Section 3, we present the two frameworks, PCQ and PCM, of
our evolutionary spectral clustering algorithms. In Section 4, we present some
extensions to our algorithms and discuss some unsolved issues. In Section 5,
we provide experimental results and finally in Section 6 we give conclusions.

1.1 Related Work

As stated in Chakrabarti et al. [2006], evolutionary clustering is a fairly new
topic formulated in 2006. However, it has close relationships with other research
areas such as clustering data streams, incremental clustering, and constrained
clustering.

In clustering data streams, large amount of data that arrive at high rate
make it impractical to store all the data in memory or to scan them multiple
times. Under such a new data model, many researchers have investigated issues
such as how to efficiently cluster massive data set by using limited memory and
by one-pass scanning of data [Guha et al. 2000], and how to cluster evolving
data streams under multiple resolutions so that a user can query any historic
time period with guaranteed accuracy [Aggarwal et al. 2003]. Clustering data
stream is related to our work in that data in data streams evolve with time.
However, instead of the scalability and one-pass-access issues, we focus on how
to obtain clusters that evolve smoothly over time, an issue that has not been
studied in the above works.

Incremental clustering algorithms are also related to our work. There exists
a large research literature on incremental clustering algorithms, whose main
task is to efficiently apply dynamic updates to the cluster centers [Gupta and
Grossman 2004], medoids [Guha et al. 2000], or hierarchical trees [Charikar
et al. 1997] when new data points arrive. However, in most of these studies,
newly arrived data points have no direct relationship with existing data points,
other than that they probably share similar statistical characteristics. In com-
parison, our study mainly focuses on the case when the similarity among ex-
isting data points varies with time, although we can also handle insertion and
removal of data points over time. In Li et al. [2004], an algorithm is proposed to
cluster moving objects based on a novel concept of micro-clustering. In Ningv
[2007], an incremental spectral clustering algorithm is proposed to handles
similarity changes among objects that evolve with time. However, the focus of
both Li et al. [2004] and Ningv [2007] is to improve computation efficiency at
the cost of lower cluster quality.

There is also a large body of work on constrained clustering. In these stud-
ies, either hard constraints such as cannot links and must links [Wagstaff
et al. 2001] or soft constraints such as prior preferences [Ji and Xu 2006] are

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

On Evolutionary Spectral Clustering • 17:5

incorporated in the clustering task. In comparison, in our work the constraints
are not given a priori. Instead, we set our goal to optimize a cost function that
incorporates temporal smoothness. As a consequence, some soft constraints are
automatically implied when historic data and clusters are connected with cur-
rent ones.

Another research that is closely related is Sarkar and Moore [2005], in which
they proposed a dynamic method that embeds nodes into latent spaces where
the locations of the nodes at consecutive timesteps are regularized so that dra-
matic change is unlikely. However, the work of Sarkar and Moore did not ex-
plicitly solve the clustering problem. Instead, their main focus is to preserve
pairwise similarities among nodes.

One important application of clustering is to analyze communities in net-
worked data. Recently, there exists a growing body of literature on analyz-
ing communities and their evolutions in dynamic networks. Palla et al. [2007]
analyzed a co-authorship network and a mobile phone network, where both
networks are dynamic, by using the clique percolation method (CPM) to ex-
tract communities at each timestep and then match communities in consec-
utive timesteps to analyze community evolution. Toyoda and Kitsuregawa
[2003] studied the evolution of Web communities from a series of Web achieves.
Spiliopoulou et al. [2006] proposed a framework, MONIC, to model and monitor
cluster transitions over time. Asur et al. [2007] introduced a family of events
on both communities and individuals to characterize evolution of communities.
Sun et al. [2007] proposed a parameter-free algorithm, GraphScope, to mine
time-evolving graphs where the Minimum Description Length (MDL) prin-
ciple is employed to extract communities and to detect community changes.
Mei and Zhai [2005] extracted latent themes from text and used the evolution
graph of themes for temporal text mining. All these studies, however, have a
common weak point—community extraction and community evolution are an-
alyzed in two separated stages. That is, when communities are extracted at
a given timestep, historic community structure, which contains valuable in-
formation related to current community structure, is not taken into account.
As a consequence, the evolutionary spectral clustering frameworks proposed
in this article can provide a useful tool to the above studies that combines the
community extraction and community evolution in a seamless way.

Our work is especially inspired by the work by Chakrabarti et al. [2006], in
which they propose an evolutionary hierarchical clustering algorithm and an
evolutionary k-means clustering algorithm. We mainly discuss the latter be-
cause of its connection to spectral clustering. Chakrabarti et al. [2006] proposed
to measure the temporal smoothness by a distance between the clusters at time
t and those at time t−1. Their cluster distance is defined by (1) pairing each
centroid at t to its nearest peer at t−1 and (2) summing the distances between
all pairs of centroids. We believe that such a distance has two weak points. First,
the pairing procedure is based on heuristics and it could be unstable (a small
perturbation on the centroids may change the pairing dramatically). Second,
because it ignores the fact that the same data points are to be clustered in both t
and t−1, this distance may be sensitive to the movement of data points such as
shifts and rotations (e.g., consider a fleet of vehicles that move together while

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

17:6 • Y. Chi et al.

the relative distances among them remain the same). A preliminary version
of our work has been presented in Chi et al. [2007]. In this article, we provide
more details such as some more in-depth discussions and the proofs for some
of the claims.

2. NOTATIONS AND BACKGROUND

First, a word about notation. Capital letters, such as W and Z , represent ma-
trices. Lower case letters in vector forms, such as �vi and �μl , represent column
vectors. Scripted letters, such as V and Vp, represent sets. For easy presenta-
tion, for a given variable, such as W and �vi, we attach a subscript t, that is,
Wt and �vi,t , to represent the value of the variable at time t. We use Tr(W) to
represent the trace of W where Tr(W) = ∑

i W (i, i). In addition, for a matrix
X ∈ Rn×k , we use span(X) to represent the subspace spanned by the columns
of X . For vector norms we use the Euclidian norm and for matrix norms we use
the Frobenius norm, that is, ‖W‖2 = ∑

i, j W (i, j)2 = Tr(W T W).

2.1 The Clustering Problem

We state the clustering problem in the following way. For a set V of n nodes, a
clustering result is a partition {V1, . . . , Vk} of the nodes in V such that V = ∪k

l=1Vl

and Vp ∩ Vq = ∅ for 1 ≤ p, q ≤ k, p
= q. A partition (clustering result) can be
equivalently represented as an n-by-k matrix Z = [�z1, . . . , �zk] whose elements
are in {0, 1} where Z (i, j) = 1 if only if node i belongs to cluster j . Obviously,
Z · �1k = �1n, where �1k and �1n are k-dimensional and n-dimensional vectors of all
ones. In addition, we can see that the columns of Z are orthogonal. Furthermore,
we normalize Z in the following way: we divide the lth column of Z by

√|Vl | to
get Z̃ , where |Vl | is the size of Vl . Note that the columns of Z̃ are orthonormal,
that is, Z̃ T Z̃ = Ik .

2.2 K -Means Clustering

The k-means clustering problem is one of the most widely studied clustering
problems. Here we describe a very simple version of the k-means clustering
problem that is based on the Euclidean distance. Assume the ith node in V can
be represented by an m-dimensional feature vector �vi ∈ Rm, and the distance
between the ith and j th nodes in V is ‖�vi −�vj ‖, the Euclidean distance. Then the
k-means clustering problem is to find a partition {V1, . . . , Vk} that minimizes
the following measure

KM =
k∑

l=1

∑
i∈Vl

‖�vi − �μl‖2, (1)

where �μl is the centroid (mean) of the lth cluster, that is, �μl = ∑
j∈Vl

�vj /|Vl |.
A well-known algorithm to the k-means clustering problem is the so called

k-means algorithm in which after initially randomly picking k centroids, the
following procedure is repeated until convergence: all the data points are as-
signed to the clusters whose centroids are nearest to them, and then the cluster
centroids are updated by taking the average of the data points assigned to them.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

On Evolutionary Spectral Clustering • 17:7

A commonly used extension to the basic k-means measure is the weighted
k-means measure

KM ′ =
k∑

l=1

∑
i∈Vl

γi‖�vi − �μ′
l‖2, (2)

where γi is the weight for the ith node and �μ′
l is the weighted centroid (mean)

of the lth cluster, that is, �μ′
l = ∑

j∈Vl
γ j �vj /

∑
i∈Vl

γi.

2.3 Spectral Clustering

The basic idea of spectral clustering is to cluster based on the eigenvectors of a
(possibly normalized) similarity matrix W defined on the set of nodes in V. Very
often W is positive semi-definite. Commonly used similarities include the inner
product of the feature vectors, W (i, j) = �vT

i �vj , the diagonally scaled Gaussian
similarity, W (i, j) = exp(−(�vi − �vj)T diag(�γ)(�vi − �vj)), and the affinity matrices
of graphs.

Spectral clustering algorithms usually solve graph partitioning problems
where different graph-based measures are to be optimized. Two popular mea-
sures are to maximize the average association and to minimize the normalized
cut [Shi and Malik 2000]. For two subsets, Vp and Vq , of the node set V (where
Vp and Vq do not have to be disjoint), we first define the association between
Vp and Vq as assoc(Vp, Vq) = ∑

i∈Vp, j∈Vq
W (i, j) Then we can write the k-way

average association as

AA =
k∑

l=1

assoc(Vl , Vl)
|Vl | (3)

and the k-way normalized cut as

NC =
k∑

l=1

assoc(Vl , V\Vl)
assoc(Vl , V)

, (4)

where V\Vl is the complement of V, containing all data points that are not in Vl .
Notice that larger average association implies tighter within-cluster relations
while smaller normalized cut implies both tighter within-cluster relations and
looser inter-cluster relations. For consistency, we further define the negated
average association as

NA = Tr(W) − AA = Tr(W) −
k∑

l=1

assoc(Vl , Vl)
|Vl | (5)

where, as will be shown later, NA is always non-negative if W is positive semi-
definite. In the remaining of the article, instead of maximizing AA, we equiv-
alently aim to minimize NA, and as a result, all the three objective functions,
KM , NA and NC are to be minimized.

Finding the optimal partition Z for either the negated average association
or the normalized cut is NP-hard [Shi and Malik 2000]. Therefore, in spectral
clustering algorithms, usually a relaxed version of the optimization problem is

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

17:8 • Y. Chi et al.

solved by (1) computing eigenvectors X (which is a relaxed version of Z̃ be-
cause X ∈ Rn×k and X T X = Ik) of some variations of the similarity matrix W ,
(2) projecting all data points to span(X), and (3) applying the k-means algo-
rithm to the projected data points to obtain the clustering result. While it may
seem nonintuitive to apply spectral analysis and then again use the k-means
algorithm, it has been shown that such procedures have many advantages such
as they work well in the cases when the data points are not linearly separable
[Ng et al. 2001]. The focus of our article is in step (1) in spectral clustering
algorithms. That is, we define meaningful objective functions that incorporate
temporal smoothness and then show how to optimize the objective functions by
solving certain eigen-decomposition problems. After step (1) is done, for steps
(2) and (3) we follow the standard procedures in traditional spectral clustering
and thus will not give more details on them.

3. EVOLUTIONARY SPECTRAL CLUSTERING—TWO FRAMEWORKS

In this section we propose two frameworks for evolutionary spectral clustering.
We first describe the basic idea.

3.1 Basic Idea

We define a general cost function to measure the quality of a clustering result
on evolving data points. The function contains two costs. The first cost, snap-
shot cost (CS), only measures the snapshot quality of the current clustering
result with respect to the current data features, where a higher snapshot cost
means worse snapshot quality. The second cost, temporal cost (CT), measures
the temporal smoothness in terms of the goodness-of-fit of the current cluster-
ing result with respect to either historic data features or historic clustering
results, where a higher temporal cost means worse temporal smoothness. The
overall cost function1 is defined as a linear combination of these two costs:

Cost = α · CS + (1 − α) · CT (6)

where 0 ≤ α ≤ 1 is a parameter assigned by the user to reflect the user’s
emphasis on the snapshot cost (versus that on the temporal cost).

In both frameworks that we propose, for a current partition (clustering re-
sult), the snapshot cost CS is measured by the clustering quality when the
partition is applied to the current data. The two frameworks are different in
how the temporal cost CT is defined. In the first framework, which we name
PCQ for preserving cluster quality, the current partition is applied to historic
data and the resulting cluster quality determines the temporal cost. In the
second framework, which we name PCM for preserving cluster membership,
the current partition is directly compared with the historic partition and the
resulting difference determines the temporal cost.

In the discussion of both frameworks, we first use the k-means cluster-
ing problem, Eq. (1), as a motivational example and then formulate the

1Our general cost function is equivalent to the one defined in Chakrabarti et al. [2006], differing
only by a constant factor and a negative sign.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

On Evolutionary Spectral Clustering • 17:9

CS1

C

A D

EB

C

A D

EB1

4

6

2

5

51

1

timestep = 1 timestep = 2

CT1 = 0

CT2 > 0 CS2

Fig. 2. Illustration of the PCQ framework: At time 2, the snapshot costs of the two cuts are the
same; however, when we measure the temporal cost by applying the cuts to historic data at time
1, the temporal cost of cut 2 is greater than that of cut 1 because there are more edges crossing cut
2 at time 1.

corresponding evolutionary spectral clustering problems (both NA and NC). We
also provide the optimal solutions to the relaxed versions of the evolutionary
spectral clustering problems and show how they relate back to the evolutionary
k-means clustering problem. In addition, in this section, we focus on a special
case where the number of clusters does not change with time and neither does
the number of nodes to be clustered. We will discuss the more general cases in
the next section.

3.2 Preserving Cluster Quality (PCQ)

In the first framework, PCQ, the temporal cost is expressed as how well the
current partition clusters historic data. We illustrate this through an exam-
ple. Assume that two partitions, Zt and Z ′

t , cluster the current data at time t
equally well. However, to cluster historic data at time t-1, the clustering per-
formance using partition Zt is better than using partition Z ′

t . In such a case,
Zt is preferred over Z ′

t because Zt is more consistent with historic data. This
basis idea is illustrated in Figure 2.

We formalize the PCQ framework for the k-means clustering problem using
the following overall cost function

CostKM = α · CSKM + (1 − α) · CTKM (7)

= α · KM t
∣∣
Zt

+ (1 − α) · KMt−1
∣∣
Zt

= α ·
k∑

l=1

∑
i∈Vl ,t

‖�vi,t − �μl ,t‖2

+(1 − α) ·
k∑

l=1

∑
i∈Vl ,t

‖�vi,t−1 − �μl ,t−1‖2

where
∣∣
Zt

means “evaluated by the partition Zt , where Zt is computed at time
t” and �μl ,t−1 = ∑

j∈Vl ,t
�vj ,t−1/|Vl ,t |. Note that in the formula of CTKM, the inner

summation is over all data points in Vl ,t , the clusters at time t. That is, although
the feature values used in the summation are those at time t-1 (i.e., �vi,t−1’s), the
partition used is that at time t (i.e., Zt). As a result, this cost CTKM = KMt−1

∣∣
Zt

penalizes those clustering results (at t) that do not fit well with recent historic
data (at t-1) and therefore promotes temporal smoothness of clusters.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

17:10 • Y. Chi et al.

3.2.1 Negated Average Association. We now formulate the PCQ framework
for evolutionary spectral clustering. We start with the case of negated average
association. Following the idea of Eq. (7), at time t, for a given partition Zt , a
natural definition of the overall cost is

CostNA = α · CSNA + (1 − α) · CTNA (8)

= α · NAt
∣∣
Zt

+ (1 − α) · NAt−1
∣∣
Zt

The above cost function is almost identical to Eq. (7), except that the cluster
quality is measured by the negated average association NA rather than the
k-means KM .

Next, we derive a solution to minimizing CostNA. First, it can be easily shown
that the negated average association defined in Eq. (5) can be equivalently
written as

NA = Tr(W) − Tr(Z̃ T W Z̃) (9)

Therefore2 we write the overall cost (8) as

CostNA = α · [Tr(Wt) − Tr(Z̃ T
t Wt Z̃ t)] (10)

+ (1 − α) · [Tr(Wt−1) − Tr(Z̃ T
t Wt−1 Z̃ t)]

= Tr(αWt + (1 − α)Wt−1) − Tr
[
Z̃ T

t (αWt + (1 − α)Wt−1)Z̃ t
]

Notice that the first term Tr(αWt +(1−α)Wt−1) is a constant independent of the
clustering partitions and as a result, minimizing CostNA is equivalent to maxi-
mizing the trace Tr[Z̃ T

t (αWt +(1−α)Wt−1)Z̃ t], subject to Z̃ t being a normalized
indicator matrix (cf Section 2.1). Because maximizing the average association is
an NP-hard problem, finding the solution Z̃ t that minimizes CostNA is also NP-
hard. So following most spectral clustering algorithms, we relax Z̃ t to X t ∈ Rn×k

with X T
t X t = Ik . It is well known [Golub and Loan 1996] that one solution to

this relaxed optimization problem is the matrix X t whose columns are the k
eigenvectors associated with the top-k eigenvalues of matrix αWt + (1−α)Wt−1.
Therefore, after computing the solution X t we can project the data points into
span(X t) and then apply k-means to obtain a solution to the evolutionary spec-
tral clustering problem under the measure of negated average association. In
addition, the value Tr(αWt + (1−α)Wt−1)− Tr

[
X T

t (αWt + (1 − α)Wt−1)X t
]

pro-
vides a lower bound on the performance of the evolutionary clustering problem.

Moreover, Zha et al. [2001] have shown a close connection between the k-
means clustering problem and spectral clustering algorithms—they proved
(also see Xu et al. [2002]) that if we put the m-dimensional feature vectors

2Here we can show that NA is positive semi-definite: We have Z̃ T Z̃ = Ik and Tr(W) = ∑n
i=1 λi

where λi ’s are the eigenvalues of W ordered by decreasing magnitude. Therefore, by Fan’s theorem
[Fan 1949], which says that maxX ∈Rn×k ,X T X =Ik

Tr(X T W X) = ∑k
j=1 λk , we can derive from (9) that

NA ≥ ∑n
j=k+1 λ j ≥ 0 if W is positive semi-definite.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

On Evolutionary Spectral Clustering • 17:11

of the n data points in V into an m-by-n matrix A = [�v1, . . . , �vn], then

KM =
k∑

l=1

∑
i∈Vl

‖�vi − �μl‖2

=
k∑

l=1

∑
i∈Vl

(
‖�vi‖2 + ‖�μl‖2 − 2�vT

i �μl

)

=
k∑

l=1

∑
i∈Vl

‖�vi‖2 −
k∑

l=1

1
|Vl |

∑
i, j∈Vl

�vT
i �vj

= Tr(AT A) − Tr(Z̃ T AT AZ̃) (11)

Comparing Eq. (11) and (9), we can see that the k-means clustering problem
is a special case of the negated average association spectral clustering prob-
lem, where the similarity matrix W is defined by the inner product AT A. As a
consequence, our solution to the NA evolutionary spectral clustering problem
can also be applied to solve the k-means evolutionary clustering problem in the
PCQ framework, i.e., under the cost function defined in Eq. (7).

3.2.2 Normalized Cut. For the normalized cut, we extend the idea of Eq. (7)
similarly. By replacing the KM Eq. (7) with NC, we define the overall cost for
evolutionary normalized cut to be

CostNC = α · CSNC + (1 − α) · CTNC (12)

= α · NCt
∣∣
Zt

+ (1 − α) · NCt−1
∣∣
Zt

Shi and Malik [2000] have proved that computing the optimal solution to mini-
mize the normalized cut is NP-hard. As a result, finding an indicator matrix Zt

that minimizes CostNC is also NP-hard. We now provide an optimal solution to
a relaxed version of the problem. Bach and Jordan [2006] proved that (also see
Xu et al. [2002]) for a given partition Z , the normalized cut can be equivalently
written as

NC = k − Tr
[
Y T

(
D− 1

2 WD− 1
2

)
Y

]
, (13)

where D is a diagonal matrix with D(i, i) = ∑n
j=1 W (i, j) and Y is any matrix

in Rn×k that satisfies two conditions: (a) the columns of D−1/2Y are piecewise
constant with respect to Z and (b) Y T Y = Ik . We remove the constraint (a) to
get a relaxed version for the optimization problem

CostNC ≈ α · k − α · Tr
[

X T
t

(
D

− 1
2

t Wt D
− 1

2
t

)
X t

]
(14)

+ (1 − α) · k − (1 − α) · Tr
[

X T
t

(
D

− 1
2

t−1Wt−1 D
− 1

2
t−1

)
X t

]

= k − Tr
[

X T
t

(
αD

− 1
2

t Wt D
− 1

2
t + (1 − α)D

− 1
2

t−1Wt−1 D
− 1

2
t−1

)
X t

]

for some X t ∈ Rn×k such that X T
t X t = Ik . Again we have a trace maxi-

mization problem and a solution is the matrix X t whose columns are the k

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

17:12 • Y. Chi et al.

eigenvectors associated with the top-k eigenvalues of matrix αD
− 1

2
t Wt D

− 1
2

t +
(1 − α)D

− 1
2

t−1Wt−1 D
− 1

2
t−1. And again, after obtaining X t , we can further project

data points into span(X t) and then apply the k-means algorithm to obtain the
final clusters.

Moreover, Xu et al. [2003] and Dhillon et al. [2004] have shown a close rela-
tionship between the normalized cut criterion and the weighted k-means crite-
rion:

KM ′ =
k∑

l=1

∑
i∈Vl

γi‖�vi − �μ′
l‖2

=
k∑

l=1

∑
i∈Vl

(γi‖�vi‖2 + γi‖�μ′
l‖2 − 2γi�vT

i �μ′
l)

=
k∑

l=1

∑
i∈Vl

γi‖�vi‖2 −
k∑

l=1

(∑
j∈Vl

γ j �vj

)2

∑
i∈Vl

γi

=
k∑

l=1

∑
i∈Vl

γi‖�vi‖2 −
k∑

l=1

�zT
l �

1
2

(
�

1
2 AT A�

1
2

)
�

1
2 �zl

�zT
l �

1
2 �

1
2 �zl

=
k∑

l=1

∑
i∈Vl

γi‖�vi‖2 −
k∑

l=1

�yT
l

(
�

1
2 AT A�

1
2

)
�yl

=
k∑

l=1

∑
i∈Vl

γi‖�vi‖2 − Tr
[
Y T

(
�

1
2 AT A�

1
2

)
Y

]
(15)

where A = [�v1, . . . , �vn], Y = [�y1, . . . , �yk], � = diag (γ1, . . . , γn), and �yl =
�1/2�zl/‖�1/2�zl‖ (recall that �zl is the indicator vector for the lth cluster). Because
the first term in Eq. (15) is a constant independent of the clusters, minimiz-
ing KM ′ is equivalent to maximizing Tr[Y T (�

1
2 AT A�

1
2)Y]. Compare Eq. (15)

with Eq. (13), we can see the similarity between the weighted k-means cri-
terion and the normalized cut criterion. In particular, if γi = 1/dii where
D = diag (AT A· �1n), then minimizing KM ′ in Eq. (15) turns out to be equivalent
to minimizing NC in Eq. (13). Therefore our evolutionary spectral clustering
algorithm can also be applied to solve the evolutionary version of the weighted
k-means clustering problem.

3.2.3 Discussion on the PCQ Framework. The PCQ evolutionary clustering
framework provides a data clustering technique similar to the moving average
framework in time series analysis, in which the short-term fluctuation is ex-
pected to be smoothed out. The solutions to the PCQ framework turn out to
be very intuitive—the historic similarity matrix is scaled and combined with
current similarity matrix and the new combined similarity matrix is fed to
traditional spectral clustering algorithms.

Notice that one assumption we have used in the above derivation is that
the temporal cost is determined by data at time t-1 only. However, the PCQ

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

On Evolutionary Spectral Clustering • 17:13

5
C

A D

EB

51

1

timestep = 1 timestep = 2

CT1 = 0

CT2 > 0 CS2

CS1

A

B

C

E

D

Fig. 3. Illustration of the PCM framework: At time 2, the snapshot costs of the two cuts are the
same; however, when we measure the temporal cost by comparing the partition at time 2 with that
at time 1, the temporal cost of cut 2 is greater because the partition resulting from cut 2 at time 2
is inconsistent the partition at time 1.

framework can be easily extended to cover longer historic data by includ-
ing similarity matrices W ’s at older time, probably with different weights
(e.g., scaled by an exponentially decaying factor to emphasize more recent
history).

3.3 Preserving Cluster Membership (PCM)

The second framework of evolutionary spectral clustering, PCM, is different
from the first framework, PCQ, in how the temporal cost is measured. In this
second framework, the temporal cost is expressed as the difference between
the current partition and the historic partition. We again illustrate this by an
example. Assume that two partitions, Zt and Z ′

t , cluster current data at time t
equally well. However, when compared to the historic partition Zt−1, Zt is much
more similar to Zt−1 than Z ′

t is. In such a case, Zt is preferred over Z ′
t because

Zt is more consistent with historic partition. This basis idea is illustrated in
Figure 3.

We first formalize the PCM framework for the evolutionary k-means prob-
lem. For convenience of discussion, we write the current partition as Zt =
{V1,t , . . . , Vk,t} and the historic partition as Zt−1 = {V1,t−1, . . . , Vk,t−1}. Now we
want to define a measure for the difference between Zt and Zt−1. Compar-
ing two partitions has long been studied in the literatures of classification and
clustering. Here we use the traditional chi-square statistics [Hubert and Arabie
1985] to represent the distance between two partitions

χ2(Zt , Zt−1) = n

(
k∑

i=1

k∑
j=1

|Vi j |2
|Vi,t | · |V j ,t−1| − 1

)
,

where |Vi j | is the number of nodes that are both in Vi,t (at time t) and in V j ,t−1

(at time t−1). Actually, in the above definition, the number of clusters k does
not have to be the same at time t and t−1, and we will come back to this point in
the next section. By ignoring the constant shift of −1 and the constant scaling
n, we define the temporal cost for the k-means clustering problem as

CTKM = −
k∑

i=1

k∑
j=1

|Vi j |2
|Vi,t | · |V j ,t−1| , (16)

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

17:14 • Y. Chi et al.

where the negative sign is because we want to minimize CTKM. The overall cost
can be written as

CostKM = α · CSKM + (1 − α) · CTKM (17)

= α ·
k∑

l=1

∑
i∈Vl ,t

‖�vi,t − �μl ,t‖2 − (1 − α) ·
k∑

i=1

k∑
j=1

|Vi j |2
|Vi,t | · |V j ,t−1| .

3.3.1 Negated Average Association. Recall that in the case of negated av-
erage association, we want to maximize NA = Tr(Z̃ T W Z̃) where Z̃ is further
relaxed to continuous-valued X , whose columns are the k eigenvectors asso-
ciated with the top-k eigenvalues of W . So in the PCM framework, we shall
define a distance dist (X t , X t−1) between X t , a set of eigenvectors at time t,
and X t−1, a set of eigenvectors at time t-1. However, there is a subtle point—
for a solution X ∈ Rn×k that maximizes Tr(X T W X), any X ′ = X Q is also a
solution, where Q ∈ Rk×k is an arbitrary orthogonal matrix. This is because
Tr(X T W X) = Tr(X T W X Q QT) = Tr((X Q)T W X Q) = Tr(X ′T W X ′). There-
fore, we want a distance dist (X t , X t−1) that is invariant with respect to the
rotation Q . One such solution, according to Golub and Loan [1996], is the norm
of the difference between two projection matrices, that is,

dist (X t , X t−1) = 1
2

∥∥X t X T
t − X t−1 X T

t−1

∥∥2, (18)

which essentially measures the distance between span (X t) and span (X t−1).
Furthermore in Eq. (18), the number of columns in X t does not have to be the
same as that in X t−1 and we will discuss this in the next section.

By using this distance to quantify the temporal cost, we derive the total cost
for the negated average association as

CostNA = α · CSNA + (1 − α) · CTNA (19)

= α · [
Tr(Wt) − Tr

(
X T

t Wt X t
)] + (1 − α)

2
· ∥∥X t X T

t − X t−1 X T
t−1

∥∥2

= α · [
Tr(Wt) − Tr

(
X T

t Wt X t
)]

+ (1 − α)
2

Tr
(
X t X T

t − X t−1 X T
t−1

)T (
X t X T

t − X t−1 X T
t−1

)
= α · [

Tr(Wt) − Tr
(
X T

t Wt X t
)]

+ (1 − α)
2

Tr
(
X t X T

t X t X T
t − 2X t X T

t X t−1 X T
t−1 + X t−1 X T

t−1 X t−1 X T
t−1

)
= α · [

Tr(Wt) − Tr
(
X T

t Wt X t
)] + (1 − α)k − (1 − α)Tr

(
X T

t X t−1 X T
t−1 X t

)
= α · Tr(Wt) + (1 − α) · k − Tr

[
X T

t (αWt + (1 − α)X t−1 X T
t−1)X t

]
Therefore, an optimal solution that minimizes CostNA is the matrix X t whose
columns are the k eigenvectors associated with the top-k eigenvalues of the
matrix αWt + (1 − α)X t−1 X T

t−1. After getting X t , the following steps are the
same as before.

Furthermore, it can be shown that the un-relaxed version of the distance
defined in Eq. (18) for spectral clustering is equal to that defined in Eq. (17) for

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

On Evolutionary Spectral Clustering • 17:15

k-means clustering by a constant shift. That is, it can be shown (cf. Bach and
Jordan [2006]) that

1
2

∥∥Z̃ t Z̃ T
t − Z̃ t−1 Z̃ T

t−1

∥∥2 = 1
2

[
Tr

(
Z̃ t Z̃ T

t Z̃ t Z̃ T
t

) + Tr
(
Z̃ t−1 Z̃ T

t−1 Z̃ t−1 Z̃ T
t−1

)
−2Tr

(
Z̃ t Z̃ T

t Z̃ t−1 Z̃ T
t−1

)]
= 1

2

[
k + k − 2Tr

(
Z̃ T

t−1 Z̃ t Z̃ T
t Z̃ t−1

)]
= k − ∥∥Z̃ T

t−1 Z̃ t
∥∥2

= k −
k∑

i=1

k∑
j=1

|Vi j |2
|Vi,t | · |V j ,t−1| . (20)

As a result, the evolutionary spectral clustering based on negated average as-
sociation in the PCM framework provides a relaxed solution to the evolutionary
k-means clustering problem defined in the PCM framework, that is, Eq. (17).

3.3.2 Normalized Cut. It is straightforward to extend the PCM framework
from the negated average association to normalized cut as

CostNC = α · CSNC + (1 − α) · CTNC (21)

= α · k − α · Tr
[

X T
t

(
D

− 1
2

t Wt D
− 1

2
t

)
X t

]

+ (1 − α)
2

· ∥∥X t X T
t − X t−1 X T

t−1

∥∥2

= k − Tr
[

X T
t

(
αD

− 1
2

t Wt D
− 1

2
t + (1 − α)X t−1 X T

t−1

)
X t

]
.

Therefore, an optimal solution that minimizes CostNC is the matrix X t whose
columns are the k eigenvectors associated with the top-k eigenvalues of the

matrix αD
− 1

2
t Wt D

− 1
2

t + (1 − α)X t−1 X T
t−1. After obtaining X t , the subsequent

steps are the same as before.
It is worth mentioning that in the PCM framework, CostNC has an advantage

over CostNA in terms of the ease of selecting an appropriate α. In CostNA, the two
terms CSNA and CTNA are of different scales—CSNA measures a sum of variances
and CTNA measures some probability distribution. Consequently, this difference
needs to be considered when choosing α. In contrast, for CostNC, because the

CSNC is normalized, both D
− 1

2
t Wt D

− 1
2

t and X t−1 X T
t−1 have the same 2-norms

scale, for both matrices have λmax = 1. Therefore, the two terms CSNC and
CTNC are comparable and α can be selected in a straightforward way.

3.3.3 Discussion on the PCM Framework. In the PCM evolutionary clus-
tering framework, all historic data are taken into consideration (with different
weights)—X t partly depends on X t−1, which in turn partly depends on X t−2

and so on. Let us look at two extreme cases. When α approaches 1, the tem-
poral cost will become unimportant and as a result, the clusters are computed
at each time window independent of other time windows. On the other hand,
when α approaches 0, the eigenvectors in all time windows are required to be

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

17:16 • Y. Chi et al.

identical. Then the problem becomes a special case of the higher-order singular
value decomposition problem [De Lathauwer et al. 2000], in which singular
vectors are computed for the three modes (the rows of W , the columns of W ,
and the timeline) of a data tensor W where W is constructed by concatenating
Wt ’s along the timeline.

In addition, if the similarity matrix Wt is positive semi-definite, then

αD
− 1

2
t Wt D

− 1
2

t + (1 − α)X t−1 X T
t−1 is also positive semi-definite because both

D
− 1

2
t Wt D

− 1
2

t and X t−1 X T
t−1 are positive semi-definite.

3.4 Comparing Frameworks PCQ and PCM

Now we compare the PCQ and PCM frameworks. For simplicity of discussion,
we only consider time slots t and t-1 and ignore older history.

In terms of the temporal cost, PCQ aims to maximize Tr(X T
t Wt−1 X t) while

for PCM, Tr(X T
t X t−1 X T

t−1 X t) is to be maximized. However, these two are closely
connected. By applying the eigen-decomposition on Wt−1, we have

X T
t Wt−1 X t = X T

t

(
X t−1, X ⊥

t−1

)
�t−1

(
X t−1, X ⊥

t−1

)T X t ,

where �t−1 is a diagonal matrix whose diagonal elements are the eigenval-
ues of Wt−1 ordered by decreasing magnitude, and X t−1 and X ⊥

t−1 are the
eigenvectors associated with the first k and the residual n − k eigenvectors
of Wt−1, respectively. It can be easily verified that both Tr(X T

t Wt−1 X t) and
Tr(X T

t X t−1 X T
t−1 X t) are maximized when X t = X t−1 (or more rigorously, when

span(X t) = span(X t−1)). The differences between PCQ and PCM are (a) if the
eigenvectors associated with the smaller eigenvalues (other than the top k)
are considered and (b) the level of penalty when X t deviates from X t−1. For
PCQ, all the eigenvectors are considered and their deviations between time t
and t − 1 are penalized according to the corresponding eigenvalues. For PCM,
rather than all eigenvectors, only the first k eigenvectors are considered and
they are treated equally. In other words, in the PCM framework, other than the
historic cluster membership, all details about historic data are ignored.

Although by keeping only historic cluster membership, PCM introduces more
information loss, there may be benefits in other aspects. For example, the CT
part in the PCM framework does not necessarily have to be temporal cost—it
can represent any prior knowledge about cluster membership. For example, we
can cluster blogs purely based on interlinks. However, other information such
as the content of the blogs and the demographic data about the bloggers may
provide valuable prior knowledge about cluster membership that can be incor-
porated into the clustering. The PCM framework can handle such information
fusion easily.

4. EXTENSIONS

There are two assumptions in the PCQ and the PCM framework proposed in the
last section. First, we assumed that the number of clusters remains the same
over all time. Second, we assumed that the same set of nodes is to be clustered
in all timesteps. Both assumptions are too restrictive in many applications.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

On Evolutionary Spectral Clustering • 17:17

In this section, we extend our frameworks to handle the issues of variation in
cluster numbers and insertion/removal of nodes over time. In addition, we also
discuss some other potential extensions and some unsolved issues.

4.1 Variation in Cluster Numbers

In our discussions so far, we have assumed that the number of clusters k does
not change with time. However, keeping a fixed k over all time windows is a very
strong restriction. Here we investigate what will happen if the cluster number
k at time t is different from the cluster number k′ at time t−1.

It turns out that both the PCQ and the PCM frameworks can handle vari-
ations in cluster number already. In the PCQ framework, the temporal cost
is expressed by historic data themselves, not by historic clusters and there-
fore the computation at time t is independent of the cluster number k′ at
time t − 1. In the PCM framework, as we have mentioned, the partition dis-
tance (Eq. 16) and the subspace distance (Eq. 18) can both be used without
change when the two partitions have different numbers of clusters. As a result,
both of our PCQ and PCM frameworks can handle variations in the cluster
numbers.

4.2 Insertion and Removal of Nodes

Another assumption that we have been using is that the number of nodes in V
does not change with time. However, in many applications the data points to
be clustered may vary with time. In the blog example, very often there are old
bloggers who stop blogging and new bloggers who just start. Here we propose
some heuristic solutions to handle this issue.

4.2.1 Node Insertion and Removal in PCQ. For the PCQ framework, the
key is αWt + (1 − α)Wt−1. When old nodes are removed, we can simply remove
the corresponding rows and columns from Wt−1 to get W̃ t−1 (assuming W̃ t−1

is n1 × n1). However, when new nodes are inserted at time t, we need to add
entries to W̃ t−1 and to extended it to Ŵt−1, which has the same dimension as
Wt (assuming Wt is n2 ×n2). Without lost of generality, we assume that the first
n1 rows and columns of Wt correspond to those nodes in W̃ t−1. We propose to
achieve this by defining

Ŵt−1=
[

W̃ t−1 Et−1

ET
t−1 Ft−1

]
for

⎧⎨
⎩

Et−1 = 1
n1

W̃ t−1
�1n1

�1T
n2−n1

Ft−1 = 1
n2

1

�1n2−n1
�1T

n1
W̃ t−1

�1n1
�1T

n2−n1

Such a heuristic has the following good properties.

PROPERTY 1. (1) Ŵt−1 is positive semi-definite if Wt−1 is. (2) In Ŵt−1, for each
existing node vold , each newly inserted node vnew looks like an average node in
that the similarity between vnew and vold is the same as the average similarity
between any existing node and vold . (3) In Ŵt−1, the similarity between any pair
of newly inserted nodes is the same as the average similarity among all pairs of
existing nodes.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

17:18 • Y. Chi et al.

PROOF. For claim (1), we first notice that if Wt−1 is positive semi-definite
then so is W̃ t−1. Furthermore, Ŵt−1 can be written as

Ŵt−1 =
[

In1×n1

B

] [
W̃ t−1

] [
In1×n1

B

]T

,

where B = 1
n1

�1n2−n1
�1T

n1
is an (n2 − n1)-by-n1 matrix of all entries 1

n1
. If W̃ t−1 is

positive semi-definite, then we can write W̃ t−1 = CCT (e.g., by the Cholesky
decomposition). As a result, we have

Ŵt−1 =
([

In1×n1

B

] [
C

]) ([
In1×n1

B

] [
C

])T

,

which implies that Ŵt−1 is positive semi-definite as well.
For claim (2) and claim (3), we notice that the i j th element of Et−1 equals the

average over the i-th row of W̃ t−1 and each element of Ft−1 equals the average
over all the elements of Ŵt−1.

We can see that these properties are appealing when no prior knowledge is
given about the newly inserted nodes.

4.2.2 Node Insertion and Removal in PCM. For the PCM framework, when
old nodes are removed, we remove the corresponding rows from X t−1 to get X̃ t−1

(assuming X̃ t−1 is n1 × k). When new nodes are inserted at time t, we extend
X̃ t−1 to X̂ t−1, which has the same dimension as X t (assuming X t is n2 × k) as
follows

X̂ t−1 =
[

X̃ t−1

Gt−1

]
for Gt−1 = 1

n1

�1n2−n1
�1T

n1
X̃ t−1. (22)

That is, we insert new rows as the row average of X̃ t−1. After obtaining X̂ t−1,
we replace the term (1−α)X t−1 X T

t−1 with (1−α)X̂ t−1(X̂ T
t−1 X̂ t−1)−1 X̂ T

t−1 in Eqs.
(19) and (21).

Such a heuristic has the following good property.

PROPERTY 2. Equation (22) corresponds to for each newly inserted nodes,
assigning to it a prior clustering membership that is approximately proportional
to the size of the clusters at time t − 1.

PROOF. We start with an assumption

X t−1 QT ≈ Z̃ t−1

where Q is a k × k orthogonal matrix. The intuition behind this assumption
is that the eigenvectors is roughly inline with the normalized cluster mem-
bership indicator matrix. Weiss [1999] has shown that the above assumption
is valid when the within-cluster and between-cluster similarities are approxi-
mately constant and has applied perturbation theories to extend it to general
cases.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

On Evolutionary Spectral Clustering • 17:19

Under this assumption, we can write X t−1 as

X t−1 ≈ Z̃ t−1 Q = Zt−1 DQ

where D is a k × k diagonal matrix with D(i, i) = 1/
√|Vi,t−1|. Therefore, for a

newly inserted nodes, for which we have no information at all, if we extend X t−1

by adding a row �xT = mean(X t−1), then equivalently on the righthand side, we
need to extend Zt−1 by adding a row �zT = mean(Zt−1) = (m1

n , . . . , mk
n) where

n = |Vt−1| and mi = |Vi,t−1|. So instead of a hard indicator vector, �zT is a soft
membership prior probability distribution where the probability of assigning
the newly inserted nodes to cluster i is proportional to the size of Vi,t−1, the size
of cluster i at time t − 1. The same property holds when multiple new nodes
are inserted to get X̂ t−1.

The final step X̂ t−1(X̂ T
t−1 X̂ t−1)−1 X̂ T

t−1 is just to guarantee the result to be an
orthogonal projection matrix.

4.3 Clustering Directed Graphs

Assume V are the nodes in a graph to be partitioned. In many applications,
instead of undirected graphs, the graphs are directed. As a result, instead of
a symmetric affinity matrix W , we have an asymmetric affinity matrix P . As-
suming the graph represented by P represents an ergodic Markov chain, Zhou
et al. [2005] extended the normalized cut criterion by defining the cut between
two clustering as the probability of moving between the two clusters. Zhou
et al. [2005] further proved that under the above extension, we can define the
similarity matrix for the nodes in a directed graph by

� = 	1/2 P	−1/2 + 	−1/2 P T 	1/2

2

where 	 is the stationary solution to the Markov chain defined by P . Then,
by replacing all W ’s in our previous derivation by � (notice that � is symmet-
ric), we can extend the evolutionary spectral clustering to the case of directed
graphs.

4.4 Offline Algorithms

All the algorithms we have discussed so far are online algorithms, in which
the system is causal and the historic data is used for temporal smoothness.
However, there are applications in which an offline version is needed where both
historic data and future data are used for temporal smoothness. For example,
in image segmentation applications, there are cases in which the whole set of
frames are obtained first and the segmentation is applied afterwards.

The PCQ framework can be easily extended to the offline scenario—when
considering partitions at time t, we add weighted data at both time t−1 and time
t+1. The PCM version is more complicated. For ease of discussion, we assume
the total time windows are 1, 2, . . . , T and we set X 0 = X 1 and X T+1 = X T .

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

17:20 • Y. Chi et al.

Then, we define the total objective function as

Total Cost =
T∑

t=1

(
α · CSt + (1 − α) · CTt

)
(23)

=
T∑

t=1

{
α · CSt + (1 − α)

4
· ∥∥X t−1 X T

t−1 − X t X T
t

∥∥2

+ (1 − α)
4

· ∥∥X t X T
t − X t+1 X T

t+1

∥∥2
}
.

In such as offline case, an iterative algorithm is needed to solve the globally
optimal X 1, . . . , X T .

4.5 Determine k and α

In Section 4.1, we have discussed how our algorithms can handle the case where
the cluster number k is varying over time. However, we did not discuss how
k is determined in the first place. Determining the number of clusters is an
important research problem in clustering and there are many effective methods
for selecting appropriate cluster numbers. For example, one intuitive method
is to look at the gap between consecutive eigenvalues and select the cluster
number to be k where the gap between the kth and the (k+1)-th eigenvalues
is large. As another example, some researchers define certain measures on
clustering results (e.g., the modularity defined in Newman and Girvan [2004])
and then select the cluster number k that optimizes the defined measures. Our
algorithms can adopt any of these methods for automatically choosing k because
our algorithms only change the similarity among nodes but not the fundamental
algorithms (i.e., we still use the same spectral clustering algorithms).

How to determine α is another challenging issue. Of course, when the ground
truth is available, standard validation procedures can be used to select an op-
timal α. However, in many cases there is no ground truth and the clustering
performance depends on the user’s subjective preference (e.g., to what level the
user cares about temporal smoothness). In this respect, through the parameter
α, our algorithms provide the user a mechanism to push the clustering results
toward his or her preferred outcomes. The problems of whether a “correct” α

exists and how to automatically find the best α when there is no ground truth
are beyond the scope of this paper.

5. EXPERIMENTAL STUDIES

In this section, we report experimental studies based on both synthetic data
sets and a real blog data set.

5.1 Synthetic Data

We design three sets of experiments using different synthetic data. In the first
two sets of experiments, we study some properties of our NA-based evolutionary
spectral clustering algorithms on stationary and nonstationary data, respec-
tively. In the third experiment, we study the NC-based evolutionary spectral

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

On Evolutionary Spectral Clustering • 17:21

Fig. 4. (a) The initial positions for the data points in the stationary data set and (b) the initial
adjacency matrix for the data points in the non-stationary data set.

clustering algorithm. In all the experiments, unless stated otherwise, we (some-
what arbitrarily) set α to be 0.9.

5.1.1 Stationary Data. In this section, we show several experimental stud-
ies using a stationary synthetic data set where data variation is due to a zero-
mean noise. The data points to be clustered are generated in the following way.
Eight hundred two-dimensional data points are initially positioned as described
in Figure 4(a) at timestep 1. As can be seen, there are roughly four clusters (the
data were actually generated by using four Gaussian distributions centered in
the four quadrants). Then in timesteps 2 to 10, we perturb the initial positions
of the data points by adding an i.i.d. Gaussian noise to the initial positions of
the data points. We use this data to simulation a stationary situation where
the concept is relatively stable but there exist short-term noises. We choose to
use W = AT A as the similarity measure among different data points.

By using the NA-based spectral clustering algorithm, we design two base-
lines. The first baseline, which we call ACC, accumulates all historic data up to
the current timestep t and applies the NA-based spectral clustering algorithm
on the aggregated data. The second baseline, which we call IND, independently
applies the NA-based spectral clustering algorithm on the data in only timestep
t and ignores all historic data before t. For our algorithms, we use the NA-based
PCQ and PCM algorithms. For performance comparison, we use the KM de-
fined for the k-means clustering problem (i.e., Eq. (1)) as the measure, where
a smaller KM value is better. Unless stated otherwise, all experiments are re-
peated 50 times with different random seeds and the average performances are
reported.

In Figures 5(a) and 5(b), we report the snapshot cost CSKM and the temporal
cost CTKM for the two baselines and for our algorithms from timesteps 1 to
10. For both costs, a lower value is better. As can be seen from the figure,
the ACC baseline has low temporal smoothness but very high snapshot cost,
whereas the IND baseline has the low snapshot cost but very high temporal
cost. In comparison, our two algorithms show low temporal cost at the price of
a little increase in snapshot cost. The overall cost α · CSKM + (1 − α) · CTKM is

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

17:22 • Y. Chi et al.

Fig. 5. The performance for the stationary synthetic data set, which shows that PCQ and PCM
result in low temporal cost at a price of a small increase in snapshot cost.

0.2 0.4 0.6 0.8 1
1700

1750

1800

1850

α

Snapshot Cost (CS)

PCQ

PCM

0.2 0.4 0.6 0.8 1
1700

1750

1800

1850

1900

1950

α

Temporal Cost (CT)

PCQ

PCM

Fig. 6. The tradeoff between snapshot cost and temporal cost, which can be controlled by α.

given in Figure 5(c). As can be seen, the ACC baseline has the worst overall
performance and our algorithms improve a little over the IND baseline. In
addition, Figure 5(d) shows the degree of cluster change over time as defined
in Eq. (20). We can see that as expected, the cluster membership change using
our frameworks is less dramatic than that of the IND baseline, which takes no
historic information into account.

Next, for the same data set, we let α increase from 0.2 to 1 with a step of
0.1. Figure 6 shows the average snapshot cost and the temporal cost over all 10
timesteps under different settings of α. As we expected, when α increases, to
emphasize more on the snapshot cost, we get better snapshot quality at the price
of worse temporal smoothness. This result demonstrates that our frameworks
are able to control the tradeoff between the snapshot quality and the temporal
smoothness.

In the third experiment, we show a case where the PCQ and PCM frame-
works behave differently. We first generate data points using the procedure

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

On Evolutionary Spectral Clustering • 17:23

5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Timesteps

Cluster Membership Variation

PCQ

PCM

Fig. 7. A case where PCM is more robust vs PCQ.

described in the first experiment (the stationary scenario), except that this
time we generate 50 timesteps for a better view. This time, instead of four clus-
ters, we let the algorithms partition the data into two clusters. From Figure 4(a)
we can see that there are obviously two possible partitions, a horizonal cut or
a vertical cut at the center, that will give similar performance where the per-
formance difference will mainly be due to short-term noises. Figure 7 shows
the degree of cluster membership change over the 50 timesteps in one run (for
obvious reasons, no averaging is taken in this experiment). As can be seen, the
cluster membership of the PCM algorithm varies much lesser than that of the
PCQ algorithm. The reason for this difference is that switching the partition
from the horizontal cut to the vertical cut will introduce much higher penalty
to PCM than to PCQ—PCM is directly penalized by the change of eigenvectors,
which corresponds to the change of cluster membership; for PCQ, the penalty
is indirectly acquired from historic data, not historic cluster membership.

5.1.2 Nonstationary Data. The nonstationary data set is generated in ac-
cordance with the description by Newman and Girvan [2004]. This data set con-
tains 128 nodes, which are divided into 4 communities of 32 nodes each. Edges
are added randomly with a higher probability pin for within-community edges
and a lower probability pout for between-community edges. However, when the
average degree for the nodes is fixed, a single parameter z, which represents
the mean number of edges from a node to nodes in other communities, is enough
to describe the data. In our experiments, we fix z to be 4. A sample adjacency
matrix for the first timestep is shown in Figure 4(b). We generate data for 10
consecutive timesteps. In each timestep from 2 to 10, evolutions are introduced
in the following way: from each community, we randomly select certain mem-
bers to leave their original community and to join randomly the other three
communities.

Because we have the ground truth for the community membership at each
timestep, we directly study the accuracy of the community structure obtained

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

17:24 • Y. Chi et al.

Fig. 8. The performance for the non-stationary synthetic data set, which shows that PCQ and
PCM result in low overall cost and low cluster membership error.

by our algorithms. In Figure 8, we report the performance under the conditions
that the average degree of each node is 16 and at each timestep, 30% nodes
change their cluster membership. As can be seen from Figure 8(c), the evolu-
tionary spectral clustering algorithms give lower overall costs at timesteps 2
to 10. In addition, Figure 8(d) shows that the evolutionary spectral clustering
algorithms have lower error rates in cluster membership with respect to the
ground truth.

We repeat the above experiment on a data set with longer time period (50
timesteps) and show the error rates for different algorithms in Figure 9(a).
As can be seen, the IND baseline has flat error rates and the ACC baseline
has increasing error rates over time. In comparison, the evolutionary spectral
clustering algorithms have lower error rates at timesteps after the initial time.

However, Figure 9(b) show something unexpected—if we reduce the percent-
age of nodes who change their cluster membership at each timestep from 30%
to 10%, the error rate of the ACC baseline actually decreases at the first few
timesteps (to a level much lower than that of the evolutionary spectral cluster-
ing algorithms) before it increases. This result implies that for this special case,
if instead of aggregating all history, we only aggregate data in the previous two
or three timesteps, then we can get lower error rates than evolutionary spectral
clustering algorithms. The reason for this unexpected result is due to the noise
level in the data set: if the cluster structure cannot be clearly detected from
data in one timestep, then aggregating data in several timesteps helps detect
a better cluster structure; when the number of nodes who change cluster mem-
bership at each timestep is very low, then the benefit of such an aggregation
outweighs the error it introduces. To verify this point, we increase the average
degree from 16 to 18 while keeping z unchanged (this will result in less noisy
data with clearer cluster structures). As shown in Figure 9(c), the benefit of

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

On Evolutionary Spectral Clustering • 17:25

5 10 15 20 25 30 35 40 45 50
0.05

0.1

0.15

0.2

(b)

E
rr

o
r

Membership Change = 10%, Average Degree = 16

ACC

IND

PCQ

PCM

5 10 15 20 25 30 35 40 45 50
0.05

0.1

0.15

0.2

0.25

(a)

E
rr

o
r

Membership Change = 30%, Average Degree = 16

ACC

IND

PCQ

PCM

5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

(c)

E
rr

o
r

Membership Change = 10%, Average Degree = 18

ACC

IND

PCQ

PCM

Fig. 9. The performance for the non-stationary synthetic data set, under different noise levels and
evolution levels.

aggregating several timesteps disappears. This experimental study suggests
that when the data is noisy and relatively stationary, the framework proposed
in Section 3.2.3 that considers longer history may be more appropriate.

5.1.3 NC-based Evolutionary Spectral Clustering. For the case of NC-
based evolutionary spectral clustering, we use a simple example to demon-
strate that under certain circumstances, enforcing temporal smoothness has
advantages. We generate data points in the 2-dimensional Euclidean space
with only 4 timesteps (as shown in Figure 10) to compare the nonevolution-
ary version (upper panels, with α = 1) and the evolutionary version (lower
panels, with α = 0.9) of the NC-based evolutionary spectral clustering algo-
rithms. For this data set, we use the diagonally scaled Gaussian similarity
W (i, j) = exp(−(�vi − �vj)T 1

σ
I (�vi − �vj)), where σ is set to be 20. Figure 10 gives

the clustering results with the correct cluster numbers provided to the algo-
rithm. As can be seen, for the non-evolutionary version, at timestep 2, the two
letters “D”s are confused because they move too near to each other. At timestep
4, due to the change of cluster number, part of the newly introduced letter “0”
is confused with the second “D”. Neither happens to the evolutionary version,
in which the temporal smoothness is taken into account.

As a conclusion, these experiments based on synthetic data sets demonstrate
that compared to traditional clustering methods, our evolutionary spectral clus-
tering algorithms can provide clustering results that are more stable and con-
sistent, less sensitive to short-term noise, and adaptive to long-term trends.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

17:26 • Y. Chi et al.

0 20 40 60 80 100 120 140 160
50

60

70

80

90

100

110

120

130

0 20 40 60 80 100 120 140 160
50

60

70

80

90

100

110

120

130

0 20 40 60 80 100 120 140 160
50

60

70

80

90

100

110

120

130

0 20 40 60 80 100 120 140 160
50

60

70

80

90

100

110

120

130

0 20 40 60 80 100 120 140 160
50

60

70

80

90

100

110

120

130

0 20 40 60 80 100 120 140 160
50

60

70

80

90

100

110

120

130

0 20 40 60 80 100 120 140 160
50

60

70

80

90

100

110

120

130

0 20 40 60 80 100 120 140 160
50

60

70

80

90

100

110

120

130

Fig. 10. A toy example demonstrates that in comparison to traditional spectral clustering (upper
panels) our evolutionary spectral clustering (lower panels) is more robust and can handle changes
of cluster number.

5.2 Real Blog Data

The real blog data was collected by an NEC in-house blog crawler. At the NEC
Laboratories America, we have built a focused blog crawler centered on the
topic of technology. Here we give a high-level description of the crawler. There
are two databases used by the crawler. The first database contains a set of “seed
blogs”, which initially consist of some well-known blogs with technology focuses.
For the seed blogs, the crawler continuously aggregates the RSS feeds and their
corresponding entries. For each newly crawled entry, its content is analyzed and
the hyperlinks embedded in the content are extracted. If an extracted hyperlink
points to another entry and that entry belongs to a blog who is not a member of
the seed blogs, then that entry and its blog are stored into the second database.
The second database is checked regularly to see if any blog in the database
meets the criteria to become a new seed blog (the criteria are based on the
number of citations and trackbacks from current seed blogs) and if so, that blog
is moved to the first database and starts to be crawled continuously.

This NEC blog data set contains 12,952 entry-to-entry links among 407 blogs
crawled during 36 consecutive weeks, starting from July 2005. Figure 11 shows
the blog graph for this data set, where the nodes are blogs and the edges are
interlinks among blogs (obtained by aggregating all entry-to-entry links). It
can be seen that the blogs roughly form 2 main clusters. It turns out that
the larger cluster consists of blogs with technology focuses and the smaller
cluster contains blogs with non-technical focuses (e.g., politics, international
issues, digital libraries). Therefore, in the following studies, we set the number
of clusters to be 2. In addition, because the edges are sparse, we take one month
(actually 4 weeks) as a timestep and we aggregate all the edges in every month
into an affinity matrix (i.e., the similarity matrix W) for that month (timestep).
Figure 12 shows the number of edges in each month. As can be seen, the number

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

On Evolutionary Spectral Clustering • 17:27

Fig. 11. The blog graph for the NEC data set.

0 2 4 6 8 10
0

1000

2000

Month Number

E
d

g
e

 C
o

u
n

t

The Number of Edges in Each Month

Fig. 12. The number of entry-to-entry links in each month of the NEC data set.

of edges decreases toward the end. This is because some blogs became less active
over time.

In this study, for baselines we use ACC and IND with normalized cut and for
our algorithms, we use the NC-based PCQ and PCM. First, in the first column of
Table I, we report the overall costs by the four algorithms summed over months
2 to 9. As can be seen, both PCQ and PCM outperform the baselines while PCQ
has the lowest overall cost.

Next, we test how well the cluster structures obtained by different algorithms
can predict future edges. For this purpose, we count how many edges generated
at time t+1 turn out to connect two blogs belonging to different clusters, whereas
the cluster structures are computed at time t by the four algorithms. The rea-
soning behind this test is that a more reasonable cluster structure at time t
should be the one that better explains the immediate future and therefore with
fewer edges at time t+1 going between clusters. In the second column of Table I,
we report the total number of edges at time t+1 that connect blogs belonging
to different clusters at time t over months 2 to 9. In addition, to avoid any bias
on cluster sizes (e.g., extremely unbalanced clusters), in the third column of
Table I we report the total normalized cut values computed using edges at time

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

17:28 • Y. Chi et al.

Table I. Performance on the Blog Data Set

Prediction Error Prediction Error
Overall Cost (edge count) (normalized cut)

ACC 1.2375 392 1.5018
IND 1.2612 374 1.3805
NC PCQ 1.0424 363 1.3488
NC PCM 1.1769 359 1.3184

2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

Month Number

N
o
rm

a
liz

e
d
 C

u
t

The Performance on Predicting Cluster Structures

ACC
IND
PCQ
PCM

2 3 4 5 6 7 8 90

20

40

60

80

100

Month Number

E
d
g
e
 C

o
u
n
t

The Performance on Predicting Cluster Structures

ACC
IND
PCQ
PCM

Fig. 13. The performance for the NEC data set, which shows that PCQ and PCM result in low
prediction errors.

t+1 and cluster partitions at time t. As can be seen, in this measure both PCQ
and PCM outperform the baselines with PCM having the best performance.

Finally, in Figure 13 we show the detailed predicting errors (in terms of edge
count and in terms of normalized cut) over each month. From the figure, we
have the following observations. First, the ACC baseline works very well at the
very beginning. However, as time passes, because of the changes on the data
characteristics (as reflected by the change of edge count over time shown in
Figure 12), the aggregation model performs poorly toward the end. Second, the
IND baseline actually performs pretty well over all the timesteps. This suggests
that temporal smoothness does exist in this data set. Third, more often than
not, the evolutionary clustering algorithms have better performances than the
IND baseline. This good performance is due to the regularization introduced
from time t−1 to time t, which makes the cluster structures more robust to the
noise at time t. Such a regularization results in cluster structures at time t that
can be better generalized to data at time t+1.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

On Evolutionary Spectral Clustering • 17:29

6. CONCLUSION

There are new challenges when traditional clustering techniques are applied to
new data types, such as streaming data and Web/blog data, where the relation-
ship among data evolves with time. On one hand, because of long-term concept
drifts, a naive approach based on aggregation will not give satisfactory cluster
results. On the other hand, short-term variations occur very often due to noise.
Preferably the cluster results should not change dramatically over short time
and should exhibit temporal smoothness. In this article, we propose two frame-
works to incorporate temporal smoothness in evolutionary spectral clustering.
In both frameworks, a cost function is defined where in addition to the tradi-
tional cluster quality cost, a second cost is introduced to regularize the temporal
smoothness. We then derive the (relaxed) optimal solutions for solving the cost
functions. The solutions turn out to have very intuitive interpretation and have
forms analogous to traditional techniques used in time series analysis. Experi-
mental studies demonstrate that these new frameworks provide cluster results
that are both stable and consistent in the short-term and adaptive in the long
run.

ACKNOWLEDGMENTS

We thank Shenghuo Zhu, Wei Xu, and Kai Yu for the inspiring discussions, and
thank Junichi Tatemura for helping us prepare the data sets.

REFERENCES

AGGARWAL, C. C., HAN, J., WANG, J., AND YU, P. S. 2003. A framework for clustering evolving data
streams. In Proceedings of the 12th VLDB Conference.

ASUR, S., PARTHASARATHY, S., AND UCAR, D. 2007. An event-based framework for characterizing the
evolutionary behavior of interaction graphs. In Proceedings of the 13th ACM SIGKDD Conference.
ACM, New York.

BACH, F. R. AND JORDAN, M. I. 2006. Learning spectral clustering, with application to speech
separation. J. Mach. Learn. Res. 7.

CHAKRABARTI, D., KUMAR, R., AND TOMKINS, A. 2006. Evolutionary clustering. In Proceedings of the
12th ACM SIGKDD Conference. ACM, New York.

CHARIKAR, M., CHEKURI, C., FEDER, T., AND MOTWANI, R. 1997. Incremental clustering
and dynamic information retrieval. In Proceedings of the 29th STOC Conference. ACM,
New York.

CHATFIELD, C. 2003. The Analysis of Time Series: An Introduction. Chapman & Hall/CRC.
CHI, Y., SONG, X., ZHOU, D., HINO, K., AND TSENG, B. L. 2007. Evolutionary spectral clustering by

incorporating temporal smoothness. In Proceedings of the 13th ACM SIGKDD Conference. ACM,
New York.

CHUNG, F. R. K. 1997. Spectral Graph Theory. American Mathematical Society.
DE LATHAUWER, L., DE MOOR, B., AND VANDEWALLE, J. 2000. A multilinear singular value decom-

position. SIAM J. Matrix Anal. Appl. 21, 4.
DHILLON, I. S., GUAN, Y., AND KULIS, B. 2004. Kernel k-means: spectral clustering and normalized

cuts. In Proceedings of the 10th ACM SIGKDD Conference.
DING, C. AND HE, X. 2004. K-means clustering via principal component analysis. In Proceedings

of the 21st ICML Conference.
FAN, K. 1949. On a theorem of weyl concerning eigenvalues of linear transformations. In Pro-

ceedings of the National Academy of Science.
GOLUB, G. AND LOAN, C. V. 1996. Matrix Computations, third ed. Johns Hopkins University Press.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

17:30 • Y. Chi et al.

GUHA, S., MISHRA, N., MOTWANI, R., AND O’CALLAGHAN, L. 2000. Clustering data streams. In Pro-
ceedings of the IEEE Symposium on Foundations of Computer Science. IEEE Computer Society
Press, Los Alamitos, CA.

GUPTA, C. AND GROSSMAN, R. 2004. Genic: A single pass generalized incremental algorithm for clus-
tering. In Proceedings of the SIAM International Conference on Data Mining. SIAM, Philadelphia,
PA.

HUBERT, L. J. AND ARABIE, P. 1985. Comparing partitions. J. Classif. 2.
JI, X. AND XU, W. 2006. Document clustering with prior knowledge. In Proceedings of the SIGIR.

ACM, New York.
LI, Y., HAN, J., AND YANG, J. 2004. Clustering moving objects. In Proceedings of the 10th ACM

SIGKDD Conference. ACM, New York.
MEI, Q. AND ZHAI, C. 2005. Discovering evolutionary theme patterns from text: An exploration of

temporal text mining. In Proceedings of the 11th ACM SIGKDD Conference. ACM, New York.
NEWMAN, M. E. J. AND GIRVAN, M. 2004. Finding and evaluating community structure in networks.

Phys. Rev. E.
NG, A., JORDAN, M. AND WEISS, Y. 2001. On spectral clustering: Analysis and an algorithm. In

NIPS.
NING, H., XU, W., CHI, Y., GONG, Y., AND HUANG, T. 2007. Incremental spectral clustering with

application to monitoring of evolving blog communities. In Proceedings of the SIAM International
Conference on Data Mining. SIAM, Philadelphia, PA.

PALLA, G., BARABASI, A.-L., AND VICSEK, T. 2007. Quantifying social group evolution. Nature 446.
SARKAR, P. AND MOORE, A. W. 2005. Dynamic social network analysis using latent space models.

SIGKDD Explor. Newsl. 7, 2.
SHI, J. AND MALIK, J. 2000. Normalized cuts and image segmentation. IEEE Trans. Patt. Anal.

Mach. Intell. 22, 8.
SPILIOPOULOU, M., NTOUTSI, I., THEODORIDIS, Y., AND SCHULT, R. 2006. Monic: Modeling and monitor-

ing cluster transitions. In Proceedings of the 12th ACM SIGKDD Conference. ACM, New York.
SUN, J., FALOUTSOS, C., PAPADIMITRIOU, S., AND YU, P. S. 2007. GraphScope: Parameter-free mining

of large time-evolving graphs. In Proceedings of the 13th ACM SIGKDD Conference. ACM, New
York.

TOYODA, M. AND KITSUREGAWA, M. 2003. Extracting evolution of web communities from a series
of web archives. In HYPERTEXT ’03: Proceedings of the 14th ACM Conference on Hypertext and
Hypermedia. ACM, New York.

WAGSTAFF, K., CARDIE, C., ROGERS, S., AND SCHROEDL, S. 2001. Constrained K-means clustering
with background knowledge. In Proceedings of the 18th ICML Conference.

WEISS, Y. 1999. Segmentation using eigenvectors: A unifying view. In ICCV ’99: Proceedings of
the International Conference on Computer Vision Volume 2.

XU, W., LIU, X., AND GONG, Y. 2002. Spectral text clustering. Tech. Rep. 2002-L011, NEC Labora-
tories America.

XU, W., LIU, X., AND GONG, Y. 2003. Document clustering based on non-negative matrix factoriza-
tion. In Proceedings of the 26th SIGIR Conference. ACM, New York.

ZHA, H., HE, X., DING, C. H. Q., GU, M., AND SIMON, H. D. 2001. Spectral relaxation for k-means
clustering. In NIPS.

ZHOU, D., HUANG, J., AND SCHÖLKOPF, B. 2005. Learning from labeled and unlabeled data on a
directed graph. In Proceedings of the 22nd ICML Conference.

Received December 2007; revised September 2008; accepted November 2008

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 17, Publication date: November 2009.

