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Abstract. We consider the classification problem on a finite set of ob-
jects. Some of them are labeled, and the task is to predict the labels of the
remaining unlabeled ones. Such an estimation problem is generally re-
ferred to as transductive inference. It is well-known that many meaning-
ful inductive or supervised methods can be derived from a regularization
framework, which minimizes a loss function plus a regularization term. In
the same spirit, we propose a general discrete regularization framework
defined on finite object sets, which can be thought of as discrete ana-
logue of classical regularization theory. A family of transductive inference
schemes is then systemically derived from the framework, including our
earlier algorithm for transductive inference, with which we obtained en-
couraging results on many practical classification problems. The discrete
regularization framework is built on discrete analysis and geometry on
graphs developed by ourselves, in which a number of discrete differential
operators of various orders are constructed, which can be thought of as
discrete analogues of their counterparts in the continuous case.

1 Introduction

Many real-world machine learning problems can be described as follows: given
a set of objects X = {x1, x2, . . . , xl, xl+1, . . . , xn} from a domain of X (e.g., R

d)
of which the first l objects are labeled as y1, . . . , yl ∈ Y = {1,−1}, the goal is
to predict the labels of remaining unlabeled objects indexed from l + 1 to n.

If the objects to classify are totally unrelated to each other, we cannot make
any prediction statistically better than random guessing. Hence we generally
assume that there are pairwise relationships among data. A dataset endowed
with pairwise relationships can be naturally thought of as a graph. In particular,
if the pairwise relationships are symmetric, then the graph is undirected. Thus
we consider learning on graphs.

Any supervised learning algorithm can be applied to this problem, by training
a classifier f : X → Y on the set of pairs {(x1, y1), . . . , (xl, yl)}, and then using
the trained classifier f to predict the labels of the unlabeled objects. Following
this approach, one will have estimated a classification function defined on the
whole domain X before predicting the labels of the unlabeled objects. According
to [8], estimating a classification function defined on the whole domain X is more
complex than the original problem which only requires predicting the labels of



the given unlabeled objects, and it is simpler to directly predict the labels of the
given unlabeled objects. Therefore we consider estimating a discrete classifica-
tion function which is defined on the given objects X only. Such an estimation
problem is called transductive inference [8].

Many meaningful inductive methods can be derived from a regularization
framework, which minimizes an empirical loss plus a regularization term. In-
spired by this work, we develop a general discrete regularization framework de-
fined on graphs, and then derive a family of transductive algorithms from the
discrete regularization framework. This framework can be considered as discrete
analogues of variational problems [2, 3, 5] and classical regularization [7, 9]. The
transductive inference algorithm which we proposed earlier [11] can be natu-
rally derived from this framework, as can various new methods. Furthermore,
to a certain extend, much existing work can be thought of in the framework
of discrete regularization on graphs. The discrete regularization framework is
built on discrete analysis and differential geometry on graphs developed by our-
selves, in which a number of discrete differential operators of various orders are
constructed. We follow the notation used in classical differential topology and
geometry, which can be found in any standard textbook, e.g., see [6].

2 Discrete Analysis and Differential Geometry

2.1 Preliminaries

A graph G = (V,E) consists of a finite set V, together with a subset E ⊆ V ×V.
The elements of V are the vertices of the graph, and the elements of E are the
edges of the graph. We say that an edge e is incident on vertex v if e starts
from v. A self-loop is an edge which starts and ends at the same vertex. A
path is a sequence of vertices (v1, v2, . . . , vm) such that [vi−1, vi] is an edge for
all 1 < i ≤ m. A graph is connected when there is a path between any two
vertices. A graph is undirected when the set of edges is symmetric, i.e., for each
edge [u, v] ∈ E we also have [v, u] ∈ E. In the following, the graphs are always
assumed to be connected, undirected, and have no self-loops or multiple edges.

A graph is weighted when it is associated with a function w : E → R+

which is symmetric, i.e. w([u, v]) = w([v, u]), for all [u, v] ∈ E. The degree
function d : V → R+ is defined to be d(v) :=

∑

u∼v w([u, v]),where u ∼ v

denote the set of the vertices adjacent with v, i.e. [u, v] ∈ E. Let H(V ) denote
the Hilbert space of real-valued functions endowed with the usual inner product
〈f, g〉H(V ) :=

∑

v∈V f(v)g(v), for all f, g ∈ H(V ). Similarly define H(E). Note
that function h ∈ H(E) have not to be symmetric. In other words, we do not
require h([u, v]) = h([v, u]).

2.2 Gradient and Divergence Operators

In this section, we define the discrete gradient and divergence operators, which
can be thought of as discrete analogues of their counterparts in the continuous
case.



Definition 1. The graph gradient is an operator ∇ : H(V ) → H(E) defined by

(∇ϕ)([u, v]) :=

√

w([u, v])

g(v)
ϕ(v) −

√

w([u, v])

g(u)
ϕ(u), for all [u, v] ∈ E. (1)

The gradient measures the variation of a function on each edge. Clearly,

(∇ϕ)([u, v]) = −(∇ϕ)([v, u]), (2)

i.e., ∇ϕ is skew-symmetric.
We may also define the graph gradient at each vertex. Given a function

ϕ ∈ H(V ) and a vertex v, the gradient of ϕ at v is defined by ∇ϕ(v) :=
{(∇ϕ)([v, u])|[v, u] ∈ E}. We also often denote ∇ϕ(v) by ∇vϕ. Then the norm
of the graph gradient ∇ϕ at vertex v is defined by

‖∇vϕ‖ :=

(

∑

u∼v

(∇ϕ)2([u, v])

)
1

2

,

and the p-Dirichlet form of the function ϕ by

Sp(ϕ) :=
1

2

∑

v∈V

‖∇vϕ‖
p.

Intuitively, the norm of the graph gradient measures the roughness of a function
around a vertex, and the p-Dirichlet form the roughness of a function over the
graph. In addition, we define ‖∇ϕ([v, u])‖ := ‖∇vϕ‖. Note that ‖∇ϕ‖ is defined

in the space H(E) as ‖∇ϕ‖ = 〈∇ϕ,∇ϕ〉
1/2
H(E).

Definition 2. The graph divergence is an operator div : H(E) → H(V ) which
satisfies

〈∇ϕ,ψ〉H(E) = 〈ϕ,−divψ〉H(V ), for all ϕ ∈ H(V ), ψ ∈ H(E). (3)

In other words, −div is defined to be the adjoint of the graph gradient. Eq.(3)
can be thought of as discrete analogue of the Stokes’ theorem 1. Note that the
inner products in the left and right sides of (3) are respectively in the spaces
H(E) and H(V ). We can show that the graph divergence can be computed by

(divψ)(v) =
∑

u∼v

√

w([u, v])

g(v)

(

ψ([v, u]) − ψ([u, v])

)

. (4)

Intuitively, the divergence measures the net outflow of function ψ at each vertex.
Note that if ψ is symmetric, then (divψ)(v) = 0 for all v ∈ V.

1 Given a compact Riemannian manifold (M, g) with a function f ∈ C∞(M) and
a vector field X ∈ X (M), it follows from the stokes’ theorem that

∫

M
〈∇f, X〉 =

−
∫

M
(div X)f.



2.3 Laplace Operator

In this section, we define the graph Laplacian, which can be thought of as discrete
analogue of the Laplace-Beltrami operator on Riemannian manifolds.

Definition 3. The graph Laplacian is an operator ∆ : H(V ) → H(V ) defined
by 2

∆ϕ := −
1

2
div(∇ϕ). (5)

Substituting (1) and (4) into (5), we have

(∆ϕ)(v) = ϕ(v) −
∑

u∼v

w([u, v])
√

g(u)g(v)
ϕ(u). (6)

The graph Laplacian is a linear operator because both the gradient and
divergence operators are linear. Furthermore, the graph Laplacian is self-adjoint:

〈∆ϕ, φ〉 =
1

2
〈−div(∇ϕ), φ 〉 =

1

2
〈∇ϕ,∇φ 〉 =

1

2
〈ϕ,−div(∇φ)〉 = 〈ϕ,∆φ〉.

and positive semi-definite:

〈∆ϕ,ϕ〉 =
1

2
〈−div(∇ϕ), ϕ 〉 =

1

2
〈∇ϕ,∇ϕ〉 = S2(ϕ) ≥ 0. (7)

It immediate follows from (7) that

Theorem 1. 2∆ϕ = DϕS2.

Remark 1. Eq. (6) shows that our graph Laplacian defined by (5) is identical
to the Laplace matrix in [1] defined to be D−1/2(D −W )D−1/2, where D is a
diagonal matrix with D(v, v) = g(v), and W is a matrix satisfying W (u, v) =
w([u, v]) if [u, v] is an edge and W (u, v) = 0 otherwise.

2.4 Curvature Operator

In this section, we define the graph curvature as discrete analogue of the mean
curvature operator in the continuous case.

Definition 4. The graph curvature is an operator κ : H(V ) → H(V ) defined by

κϕ := −
1

2
div

(

∇ϕ

‖∇ϕ‖

)

. (8)

Substituting (1) and (4) into (8), we obtain

(κϕ)(v) =
1

2

∑

u∼v

w([u, v])
√

g(v)

(

1

‖∇uϕ‖
+

1

‖∇vϕ‖

)(

ϕ(v)
√

g(v)
−

ϕ(u)
√

g(u)

)

. (9)

Unlike the graph Laplacian (5), the graph curvature is a non-linear operator.
As Theorem 1, we can show that

Theorem 2. κϕ = DϕS1.

2 The Laplace-Beltrami operator ∆ : C∞(M) → C∞(M) is defined to be ∆f =
− div(∇f). The additional factor 1/2 in (5) is due to each edge being counted twice.



2.5 p-Laplace Operator

In this section, we generalize the graph Laplacian and curvature to an operator,
which can be thought of as discrete analogue of the p-Laplacian in the continuous
case [3, 4].

Definition 5. The graph p-Laplacian is an operator ∆p : H(V ) → H(V ) defined
by

∆pϕ := −
1

2
div(‖∇ϕ‖p−2∇ϕ). (10)

Clearly, ∆1 = κ, and ∆2 = ∆. Substituting (1) and (4) into (10), we obtain

(∆pϕ)(v) =
1

2

∑

u∼v

w([u, v])
√

g(v)
(‖∇uϕ‖

p−2 + ‖∇vϕ‖
p−2)

(

ϕ(v)
√

g(v)
−

ϕ(u)
√

g(u)

)

, (11)

which generalizes (6) and (9).
As before, it can be shown that

Theorem 3. p∆pϕ = DϕSp.

Remark 2. There is much literature on the p-Laplacian in the continuous case.
We refer to [4] for a comprehensive study. There is also some work on discrete
analogue of the p-Laplacian, e.g., see [10], where it is defined as

∆pϕ(v) =
1

gp(v)

∑

u∼v

wp−1([u, v])|ϕ(u) − ϕ(v)|p−1 sign(ϕ(u) − ϕ(v)),

where gp(v) =
∑

u∼v w
p−1([u, v]) and p ∈ [2,∞[. Note that p = 1 is not allowed.

3 Discrete Regularization Framework

Given a graph G = (V,E) and a label set Y = {1,−1}, the vertices v in a subset
S ⊂ V are labeled as y(v) ∈ Y. The problem is to label the remaining unlabeled
vertices, i.e., the vertices in the complement of S. Assume a classification function
f ∈ H(V ), which assigns a label sign f(v) to each vertex v ∈ V. Obviously, a
good classification function should vary as slowly as possible between closely
related vertices while changing the initial label assignment as little as possible.
Define a function y ∈ H(V ) with y(v) = 1 or −1 if vertex v is labeled as positive
or negative respectively, and 0 if it is unlabeled. Thus we may consider the
optimization problem

f∗ = argmin
f∈H(V )

{Sp(f) + µ‖f − y‖2}, (12)

where µ ∈]0,∞[ is a parameter specifying the trade-off between the two com-
peting terms. It is not hard to see the objective function is strictly convex, and
hence by standard arguments in convex analysis the optimization problem has
a unique solution.



3.1 Regularization with p = 2

When p = 2, it follows from Theorem 1 that

Theorem 4. The solution of (12) satisfies that ∆f ∗ + µ(f∗ − y) = 0.

The equation in the theorem can be thought of as discrete analogue of the Euler-
Lagrange equation. It is easy to see that we can obtain a closed form solution
f∗ = µ(∆+ µI)−1y, where I denotes the identity operator. Define the function
c : E → R+ by

c([u, v]) =
1

1 + µ

w([u, v])
√

g(u)g(v)
, if u 6= v; and c([v, v]) =

µ

1 + µ
. (13)

We can show that the iteration

f (t+1)(v) =
∑

u∼v

c([u, v])f (t)(v) + c([v, v])y(v), for all v ∈ V, (14)

where t indicates the iteration step, converges to a closed form solution [11]. Note
that the iterative result is independent of the setting of the initial value. The
iteration can be thought of as discrete analogue of heat diffusion on Riemannian
manifolds [2]. At every step, each node receives the values from its neighbors,
which are weighed by the normalized pairwise relationships. At the same time,
they also retain some fraction of their values. The relative amount by which
these updates occur is specified by the coefficients defined in (13).

3.2 Regularization with p = 1

When p = 1, it follows from Theorem 2 that

Theorem 5. The solution of (12) satisfies that κf ∗ + 2µ(f∗ − y) = 0.

As we have mentioned before, the curvature κ is a non-linear operator, and we
are not aware of any closed form solution for this equation. However, we can
construct an iterative algorithm to obtain the solution. Substituting (9) into the
equation in the theorem, we have

∑

u∼v

w([u, v])
√

g(v)

(

1

‖∇uf∗‖
+

1

‖∇vf∗‖

)(

f∗(v)
√

g(v)
−

f∗(u)
√

g(u)

)

+ 2µ(f∗(v)− y(v)) = 0.

(15)
Define the function m : E → R+ by

m([u, v]) = w([u, v])

(

1

‖∇uf∗‖
+

1

‖∇vf∗‖

)

. (16)

Then
∑

u∼v

m([u, v])
√

g(v)

(

f∗(v)
√

g(v)
−

f∗(u)
√

g(u)

)

+ 2µ(f∗(v) − y(v)) = 0,



which can be transformed into
(

∑

u∼v

m([u, v])

g(v)
+ 2µ

)

f∗(v) =
∑

u∼v

m([u, v])
√

g(u)g(v)
f∗(u) + 2µy(v).

Define the function c : E → R+ by

c([u, v]) =

m([u, v])
√

g(u)g(v)

∑

u∼v

m([u, v])

g(v)
+ 2µ

, if u 6= v; and c([v, v]) =
2µ

∑

u∼v

m([u, v])

g(v)
+ 2µ

.

(17)
Then

f∗(v) =
∑

u∼v

c([u, v])f∗(v) + c([v, v])y(v). (18)

Thus we can use the iteration

f (t+1)(v) =
∑

u∼v

c(t)([u, v])f (t)(v) + c(t)([v, v])y(v), for all v ∈ V (19)

to obtain the solution, in which the coefficients c(t) are updated according to (17)
and (16). This iterative result is independent of the setting of the initial value.
Compared with the iterative algorithm (14) in the case of p = 2, the coefficients
in the present method are adaptively updated at each iteration, in addition to
the function being updated.

3.3 Regularization with Arbitrary p

For arbitrary p, it follows from Theorem 3 that

Theorem 6. The solution of (12) satisfies that p∆pf
∗ + 2µ(f∗ − y) = 0.

We can construct a similar iterative algorithm to obtain the solution. Specifically,

f (t+1)(v) =
∑

u∼v

c(t)([u, v])f (t)(v) + c(t)([v, v])y(v), for all v ∈ V, (20)

where

c(t)([u, v]) =

m(t)([u, v])
√

g(u)g(v)

∑

u∼v

m(t)([u, v])

g(v)
+

2µ

p

, if u 6= v; and c(t)([v, v]) =

2µ

p

∑

u∼v

m(t)([u, v])

g(v)
+

2µ

p

,

(21)
and

m(t)([u, v]) =
w([u, v])

p
(‖∇uf

(t)‖
p−2

+ ‖∇vf
(t)‖

p−2
). (22)

It is easy to see that the iterative algorithms in Sections 3.1 and 3.2 are the
special cases of this algorithm with p = 2 and p = 1 respectively. Moreover, it is
worth noticing that p = 2 is a critical point.



4 Conclusions and Future Work

We have developed discrete analysis and geometry on graphs, and have con-
structed a general discrete regularization framework. A family of transductive
inference algorithms was derived from the framework, including the algorithm
we proposed earlier [11], which can substantially benefit from large amounts of
available unlabeled data in many practical problems. There are many possible
extensions to this work. One may consider defining discrete high-order differen-
tial operators, and then building a regularization framework that can penalize
high-order derivatives. One may also develop a parallel framework on directed
graphs [12], which model many real-world data structures, such as the World
Wide Web. Finally, it is of interest to explore the properties of the graph p-
Laplacian as the nonlinear extension of the usual graph Laplacian, since the
latter has been intensively studied, and has many nice properties [1].
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