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Abstract

In real crowdsourcing applications, each la-
bel from a crowd usually comes with a cer-
tain cost. Given a pre-fixed amount of bud-
get, since different tasks have different am-
biguities and different workers have differ-
ent expertises, we want to find an optimal
way to allocate the budget among instance-
worker pairs such that the overall label qual-
ity can be maximized. To address this issue,
we start from the simplest setting in which
all workers are assumed to be perfect. We
formulate the problem as a Bayesian Markov
Decision Process (MDP). Using the dynamic
programming (DP) algorithm, one can ob-
tain the optimal allocation policy for a given
budget. However, DP is computationally in-
tractable. To solve the computational chal-
lenge, we propose a novel approximate pol-
icy which is called optimistic knowledge gra-
dient. It is practically efficient while theo-
retically its consistency can be guaranteed.
We then extend the MDP framework to deal
with inhomogeneous workers and tasks with
contextual information available. The ex-
periments on both simulated and real data
demonstrate the superiority of our method.

1. Introduction

In many real-world machine learning applications, ob-
taining sufficient training labels is often the major ob-
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stacle for good performance. Due to the flourish of
many online crowdsourcing services (e.g., Amazon Me-
chanical Turk ), an effective way of collecting training
labels is to ask a crowd of low-paid nonexpert workers
for labeling. The class labels provided by the crowd
could be highly noisy, so each instance has to be la-
beled several times by different workers such that that
we have a large chance to correctly estimate the un-
derlying true label from those noisy labels. Each la-
bel from the crowd usually has a certain cost (e.g., 10
cents). Given a limited amount of budget, it is impor-
tant to wisely allocate the budget among instances and
workers so that the overall accuracy is maximized. To
tackle this problem, there are the following challenges.
We need to estimate the labeling ambiguity for each
instance on the fly and avoid spending much budget
on fairly easy instances. On the other hand, however,
we also need to avoid spending much budget on few
highly ambiguous instances. Our goal is to maximize
the overall labeling accuracy. Ideally, we should sim-
ply put those few highly ambiguous instances aside
to save budget for labeling many other relatively easy
instances. In addition, we also need to estimate the re-
liability of each worker on the fly and allocate as many
labeling tasks to reliable workers as possible.

To address these challenges in budget-optimal crowd-
sourcing, we start from the binary labeling task and as-
sume that: (1) each instance is associated with an un-
known probability of being positive; (2) for any given
instance and worker pair, the label provided by the
worker is drawn from the underlying label distribu-
tion of the instance. So it means that each worker is
perfectly reliable. Later we will relax (2) to consider
inhomogeneous workers. At a first glance, such an as-
sumption may seem oversimplified and thus naive. In
fact, it turns out that the budget-optimal crowdsourc-
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ing problem with such an assumption has been highly
non-trivial. We can imagine it as a K-coin tossing
problem. Each coin has a unknown head probability.
We have a budget of T tosses. We sequentially choose
a coin to toss according to some policy. We then ob-
serve the outcome. A coin may be chosen multiple
times. After the tossing budget runs out, we predict
for each coin if it is biased to head or tail using all the
observed outcomes. Our goal is to find a policy such
that the overall prediction accuracy is maximized.

To search for the optimal allocation policy, we adopt
the Bayesian setting and formulate the problem into a
finite-horizon Markov Decision Process (MDP). Here
the Bayesian setting is necessary. We shall show that
an optimal policy only exists in the Bayesian setting.
Using the MDP formulation, the optimal budget al-
location policy for any finite budget T can be readily
obtained via the dynamic programming (DP). How-
ever, DP is computationally intractable for large-scale
problems since the size of the state space grows ex-
ponentially in 7. The existing widely-used approxi-
mate policies, such as approximate Gittins index rule
(Gittins, 1989) or knowledge gradient (KG) (Gupta &
Miescke, 1996; Frazier et al., 2008), either has a high
computational cost or poor performance in our prob-
lem. In this paper, we propose a new policy, called
optimistic knowledge gradient, which combines the KG
and the conditional value-at-risk measure (Rockafellar
& Uryasev, 2002). The optimistic KG is computation-
ally efficient and achieves superior empirical perfor-
mance. Theoretically, we prove that it is consistent,
that is, when the budget T" goes to infinity, the accu-
racy converges to 100% almost surely.

It is easy to extend the MDP formulation to deal with
inhomogeneous workers. We introduce one parameter
to characterize worker reliability and update the joint
distribution of instance labeling difficulty and worker
reliability on the fly using the variational approxima-
tion. Then our decision process simultaneously selects
the next instance to label and the next worker for la-
beling the instance. The MDP framework is so flexible
that we can further easily extend it to incorporate in-
stance contextual information whenever they are avail-
able and to handle multi-class labeling.

In summary, the main contribution of the paper con-
sists of the three folds: (1) we formulate the budget
allocation in crowdsourcing into a MDP and character-
ize the optimal policy using DP; (2) computationally,
we propose an efficient approximate policy, optimistic
knowledge gradient; (3) the MDP frameowrk can be
used as a general framework to address various budget
allocation problems in crowdsourcing.

2. MDP and Optimal Policy

To better illustrate our model, we first introduce a sim-
plified homogeneous worker setting for binary-labeling
task. We note that such a simplification is important
for investigating this problem, since the incorporation
of workers’ reliability becomes rather straightforward
once this simplified problem is correctly modeled (see
Section 4).

Suppose that there are K instances and each one is as-
sociated with a true label Z; € {—=1,1} for 1 <i < K.
We denote the positive set by H* = {i : Z; = 1}.
Moreover, we characterize the labeling difficulty of
each instance by 6; € [0,1]. More precisely, 6; can be
interpreted as the percentage of the workers labels the
i-th instance as positive if a large number of noiseless
(perfectly reliable) workers are asked for the labeling
task. Let’s consider a concrete example of identify-
ing whether an individual is an adult (positive) or not
(negative) by presenting his/her photo to workers. For
an individual above 25 years old, the corresponding 6;
is close to 1; and for one below 15, 6; is close to 0. For
these individuals, it is easy to get consensus labels and
thus only a few labels for each photo are enough. On
the other hand, for an individual between 15 and 25,
0; will be close to 0.5 and the corresponding labeling
task is difficult. We assume that the soft-label 6; is
consistent with the true label in the sense that Z; =1
if and only if 8; > 0.5 and hence H* = {i : §; > 0.5}.

As described in the introduction, we can model the
sequential labeling process as a coin-tossing problem.
Given the total budget T, at each stage 0 <t < T —1,
we choose an instance iy € A = {1,...,K} to ac-
quire its label from a random noiseless worker. Ac-
cording to the meaning of 6;,, the label we obtained,
vi, € {—1,1}, will follow the Bernoulli distribution
with the parameter 6;,. In fact, 6;, can be viewed as
the head probability of the i;-th coin/instance and the
label y;, is the outcome of the coin toss at the stage
t. We note that, at this moment, all workers are as-
sumed to be identical so that y;, only depends on 0;,
but not on which worker gives the label. When the
budget is exhausted, we need to make an inference
about the true label and estimate the positive set H.
Since workers are assumed to be identical, the most
straightforward way is by the majority vote. Our goal
is to determine the optimal allocation sequence (a.k.a.
optimal allocation policy) (ig,...,i7—1) so that over-
all accuracy is maximized. Here, a natural question to
ask is whether the optimal allocation policy exists and
what assumptions do we need for the existence of the
optimal policy. To answer this question, we provide a
concrete example and motivates our Bayesian setting.
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Figure 1. Left: label matrix. Right: decision boundary.

Table 1. Expected improvements. The current accuracies
are in the 2nd column. The 3rd and 4th contain the accu-
racies with the next labels being 1 and —1.

Acc Cur. |y =1|y = —1 | Expected Acc Improvement
61 >0.5]1 1 1 1 0

61 <0.5|0 0 0 0 0

62 >0.5(|05 |1 0 02 02 —0.5>0
02 <0.5/0.5 |0 1 1— 6, 0.5—62>0

63 >0.5]|1 1 0.5 03 + 0.5(1 — 63) | 0.5(03 —1) <0
63 <0.5|0 0 0.5 0.5(1 — 603) 0.5(1 —603) >0

2.1. Tllustration Example

Let us check a toy example with 3 instances and 5 col-
lected labels (Figure 1). If we only have the budget to
get one more label, which instance should be chosen to
label? Tt might be obvious that we do not have to put
the remaining budget on the first instance since we are
relatively more confident on what its true label should
be. Thus, the problem becomes how to choose be-
tween the second and third instances. In what follows,
we shall show that there is no uniformly optimal pol-
icy under the frequentist setting. A uniformly optimal
policy can only exist in the Bayesian setting.

Let us compute the expected improvement in accu-
racy in terms of the frequentist risk (Table 1). We
assume that 6; # 0.5 and if the number of 1 and —1
labels are the same for an instance, the accuracy is 0.5
based on a random guess. From Table 1, we should
not label the first instance since the improvement is
always 0. This coincides with our intuition. When
max (0 —0.5,0.5 —63) > 0.5(1—#63) or 85 > 0.5, which
corresponds to the blue region in Figure 1, we should
choose to label the second instance. Otherwise, we
should ask the label for the third one. Since the true
value of 65 and 03 are unknown, a uniformly optimal
policy does not exist. In constrast, if we choose the
Bayesian setting with prior distribution on each 6;,
we could determine the next instance for labeling by
taking another expectation over the distribution of ;.
Therefore, we adopt the Bayesian setting to formulate
the budget allocation problem in crowdsourcing.

2.2. Bayesian Setup

We assume that each 6; is drawn from a known Beta
prior distribution Beta(a?, ?). This can be interpreted

R

as having a? positive and b negative pseudo-labels for
the i-th instance at the initial stage. In practice when
there is no prior knowledge, we can simply assume
a? = bY = 1 so that the prior is a uniform distribution.
Other objective priors (e.g., Jeffreys prior or reference
prior) can also be adopted (Robert, 2007).

At each stage t with Beta(a!, bt) as the current poste-
rior distribution for 6;, we choose an instance i; and
acquire its label y;, ~ Bernoulli(6;,). By the fact that
Beta is the conjugate prior of the Bernoulli, the pos-
terior of 6;, in the stage ¢t + 1 will be updated as
Beta(al ", b"") = Beta(al, + 1,b!,) if y;, = 1 and

Beta(a/ ™, bi*!) = Beta(al,,b!, + 1) if y;, = —1. We

s Vi i) Vit

put {a!,b!}5 | into a K x 2 matrix S?, called a state
matrix, and let S! = (al, bt) be the i-th row of S*. The
update of the state matrix can be written in a more

compact form:

ify;, = 1;

gttt — {St + (e, 0) (1)

S +(0,e;,) ify;, =—1,
where e;, is a K x 1 vector with 1 at the ¢;-th entry
and 0 at all other entries. As we can see, {S'} is a
Markovian process because S'+! is completely deter-
mined by the current state S?, the action i; and the
obtained label y;,. It is easy to calculate the state
transition probability Pr(y;,|S?, i), which is the pos-
terior probability that we are in the next state S*+! if
we choose i; to be label in the current state S:

t

(2)

7 )
a;, +b;,

Pr(ys, = 1S,ir) = E(0;,|S") = ——

and Pr(y;, = —1|S%,i;) = 1 —Pr(y;, = 1|S%,4;). Given
this labeling process, we further define a filtration
{F YL, where F; is the o-algebra generated by the
sample path (i, Yig, - - -, 4t—1,Yi,_, ). We choose the ac-
tion i, i.e., the instance to label, after we observe the
historical labeling results up to the stage t — 1. Hence,
it is Fy-measurable. The budget allocation policy is
defined as a sequence of decisions: ™ = (ig, ..., i7—-1).

2.3. Accuracy Maximization

At the stage T' when the budget is exhausted, we need
to infer the true label of each instance based on the
collected labels. In particular, we need to determine a
positive set Hy which maximizes the conditional ex-
pected accuracy conditioning on Fp (i.e., minimizing
the posterior risk):

fT)7 (3)

Hpr =

argmax E (Z 1(i € H") + Z 1€ H)

HC{L...K}  \ ieH igH
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where 1(+) is the indicator function. We first observe
that, for 0 < ¢t < T, the conditional distribution
0;|F; is exactly the posterior distribution Beta(al, bt),

which depends on the historical sampling results only
through S! = (af, b!). Hence, we define

I(a,b) = Pr(0 > 0.5/0 ~ Beta(a, b)), )
Pit =Pr(i € H*|F;) = Pr(0 > 0.5|Sf) = I(aﬁv bﬁ), (5)

As shown in (Xie & Frazier, 2012), the final positive
set Hp can be determined by the Bayes decision rule.

Proposition 2.1 Hr = {i: PT > 0.5} solves (3) and
the expected accuracy on RHS of (3) can be written as
Zfil h(PF), where h(z) = max(x,1 — ).

?

According to the next corollary with the proof in Ap-
pendix, we show that the construction of Hp is based
on the majority vote.

Corollary 2.2 I(a,b) > 0.5 if and only if a > b and
I(a,b) = 0.5 if and only if a = b. Therefore, Hr =
{i:al > bI'} solves (3).

By viewing a? and b? as pseudo-counts of 1s and —1s,
al and bl are the total counts of 1s and —1s. The
estimated positive set Hr = {i : al > bl'} consists
of instances with more (or equal) counts of 1s than
that of —1s. When af = b9, Hy is constructed exactly
according to the majority vote rule.

To find the optimal allocation policy which maximizes

the expected accuracy, we need to solve the following
optimization problem:

V(S°) = supE™ |:IE ( ST itieH )+ Y 1(igH*)|fT>]

i€Hp igHp

K
= supE” <Z h(Pf)) , (6)

4 i=1
where E™ represents the expectation taken over the
sample paths (g, ¥ig,---»97-1,Yir_,) generated by a
policy . The second equality is due to Proposition
2.1 and V(SY) is called value function at the initial
state S°. The optimal policy 7* is any policy 7 that

attains the supremum in (6).

2.4. MDP and Optimal Policy

To solve the optimization problem in (6), we formulate
it into a Markov Decision Process (MDP). To do so,
we use the technique from (Xie & Frazier, 2012) to
decompose the final expected accuracy as a sum of
stage-wise rewards as shown in the next proposition.
Note that the problem in (Xie & Frazier, 2012) is an
infinite-horizon one which optimizes the stopping time
while our problem is finite-horizon since the labeling
procedure must be stopped at the stage T

Proposition 2.3 Define the stage-wise expected re-
ward as:
R(S',it) = E (h(PT) — h(P))|S" i) (7)

then the value function (6) becomes:

V(S°) = Go(S°) + stipIETr <Z R(St,it)> . (8)

t=0

where Go(S°) = Zfil h(P?) and the optimal policy m*

K3
18 any policy w that attains the supremum.

Since the expected reward (7) only depends on Sft =
(af ,b}) € R%, we define R(af,,b! ) = R(S' i;) and
use them interchangeably. As a function on Rf_,
R(a,b) has an analytical representation. In fact, for
any state (a,b) of a single instance, the reward of get-

ting a label 1 and a label —1 are:
Ri(a,b) = h(I(a+1,b)) — h(I(a,b)), (9)
Rs(a,b) = h(I(a,b+ 1)) — h(I(a,b)). (10)

The expected reward R(a,b) = p1 Ry +p2Ro with p; =
45 and pa = aL-i-b are transition probabilities in (2).

With Proposition 2.3, the maximization problem (6)
is formulated as a T-stage MDP (8), which is associ-
ated with a tuple {T,{S'}, A, Pr(y;,|S*,i:), R(S*,is)}.
Here, the state space at the stage t, St, is all possible
states that can be reached at ¢t. Once we collect a label
Yi,, one element in S* (either af or b} ) will add one.
Therefore, we have

S (G LR R » R

i=1 ab
The action space is the set of instances that could be
labeled next: A = {1,..., K}. The transition proba-
bility Pr(y;,|S?,i;) is defined in (2) and the expected
reward at each stage R(S?,i;) is defined in (7). More-
over, due to the Markovian property of {S'}, it is
enough to consider a Markovian policy (Powell, 2007)
where i; is chosen only based on the state S?.

With the MDP in place, we can apply dynamic pro-
gramming (DP) algorithm (Puterman, 2005; Powell,
2007) (a.k.a. backward induction) to to compute the
optimal policy according to the Bellman equation. Al-
though DP can identify the optimal policy, its compu-
tation is intractable since the size of the state space
|St| grows exponentially in ¢ according to (11). There-
fore, we need some computationally efficient approxi-
mate policies.

3. Optimistic Knowledge Gradient

In this section, we first review some existing approx-
imate policies to better motivate the proposed new
policy named optimistic knowledge gradient.
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3.1. Existing Approximate Policies

The simplest approximate policy is the uniform sam-
pling (a.k.a, pure exploration), i.e., we choose the next
instance to label uniformly and independently at ran-
dom: i; ~ Uniform(1,...,K). However, this policy
does not explore the structure of the problem.

With the decomposed reward function, our problem
is essentially a finite-horizon Bayesian multi-armed
bandit (MAB) problem. Gittins (1989) showed that
Gittins index is an optimal policy for infinite-horizon
MAB with the discounted reward. Since our prob-
lem is finite-horizon, Gittins index is no longer opti-
mal while it can still provide us a good heuristic index
rule. However, the computational cost of Gittins in-
dex is very high. To compute finite-horizon Gittins
index for our problem, the approzimate method (i.e.,
calibration method (Gittins, 1989; Nino-Mora, 2011))
requires O(T?) time and space complexity; while the
state-of-the-art exact method (Nino-Mora, 2011) re-
quires O(T°) time and space complexity.

A computationally more attractive policy is the knowl-
edge gradient (KG) (Frazier et al., 2008). It is essen-
tially a single-step look-ahead policy, which greedily
selects the next instance with the largest expected re-
ward:

t t
i

—Ri(aj, §)+a iy

i i

iy = arg max (R(GL b;) = - Ra(aj, Z)>
(12)

As we can see, this policy corresponds to the first step

in DP algorithm and hence KG policy is optimal if

only one labeling chance is remaining.

a;
B
ai+

1,

When there is a tie, if we select the one with the
smallest index, the policy is referred to determinis-
tic KG; while if we randomly break the tie, the policy
is referred to randomized KG. Although KG has been
successfully applied to many MDP problems (Powell,
2007), it will fail in our problem as shown in the next
proposition with the proof in Appendix.

Proposition 3.1 Assuming that a? and bY are posi-
tive integers and letting € = {i : a) = Y}, then the
deterministic KG policy will acquire one label for each
item in € and then consistently obtain the label for the

first item even if the budget T goes to infinity.

According to Proposition 3.1, the deterministic KG is
NOT a consistent policy, where the consistent policy
refers to the policy that will achieve 100% accuracy
almost surely when T goes to infinity. We note that
randomized KG policy can address this problem. How-
ever, from the proof of Proposition 3.1, randomized
KG behaves similar to the uniform sampling policy in
many cases and its empirical performance is undesir-

Algorithm 1 Optimistic Knowledge Gradient

Input: Parameters of prior distributions for in-
stances {a?,b?}% | and the total budget T
fort—O,...7T—1 do
Select the next instance 4; to label according to:
i = argmax (R+(a bY) = max(Ri(al,b}), Ra(al, J))
ie{l,...,K}
Acquire the label y;, € {—1,1}.
ify;,, =1 then

1 1 t+1 t+1
a’;j = al —l—l,b“+ =0 ;a aitt = at, bt = bt
for all 4 75 it.
else
aft! = a“,bﬁjl =bl + 1 a =al, bl =t
for all 7 # ;.
end if
end for
Output: The positive set Hy = {i : al > bl }.

able. In the next subsection, we will propose a new
approximate allocation policy.

3.2. Optimistic Knowledge Gradient

The stage-wise reward R(a,b) can be viewed as a ran-
dom variable with a two point distribution, i.e., with
the probability p1 = ;45 of being Ri(a,b) and the
probability py = aLer of being Ra(a,b). The KG pol-
icy selects the instance with the largest expected re-
ward. However, it is not consistent. A simple idea
is to select the instance based on the optimistic out-
come of the reward, i.e., the instance with the largest
R™(a,b) = max(Ri(a,b), Ra(a,b)). The policy, which
is named as optimistic knowledge gradient, is presented
in Algorithm 1.

Theoretically, the optimistic KG policy is consistent
in our problem as shown in the next theorem with the
proof in Appendix.

Theorem 3.2 Assuming that a9 and V) are positive
integers, the optimistic KG is a consistent policy, i.e,
as T goes to infinity, the accuracy will be 100% (i.e.,
Hr = H*) almost surely.

Computationally, the optimistic KG has the time com-
plexity O(KT) and space complexity O(K), both of
which are smaller in magnitude than that of the ap-
proximate Gittins index rule.

The proposed optimistic KG is motivated by a more
general framework, called conditional value-at-risk
(CVaR) (Rockafellar & Uryasev, 2002). In particular,
for a random variable X with the support X (e.g., our
random reward with the two point distribution), let a-
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quantile function be denoted as Qx («) = inf{z € X :
a < Fx(z)}, where Fx(-) is the CDF of X. The value-
at-risk is defined as: VaR,(X) = Qx (1 — «) and the
conditional value-at-risk, CVaR,(X), is the expected
reward exceeding (or equal to) VaR,(X). As shown
in (Rockafellar & Uryasev, 2002), CVaR,(X) can be
expressed as:

CVaRy(X) = max qi1R1+ ¢Ro,

{¢1>0,92>0}

1 1
st. 1 < —p1, @2 < —p2, g1 +q2 =1
(07 Q

In our problem, when o = 1, CVaR,(X) = p1R; +
p2 Ry, which is the expected reward; when a — 0,

CVaR,(X) = max(R1, Rz), which is used as the se-
lection criterion in optimistic KG. In fact, a more
general policy could be selecting the next instance
with the largest CVaR,(X) with a tuning parame-
ter a € [0,1]. We can extend Theorem 3.2 to prove
that the policy based on CVaR,(X) is consistent for
any a < 1. Since our MDP formulation is essentially
a multi-armed Bayesian bandit (MAB), the proposed
optimistic KG and CVaR based KG could be adopted
as general index policies for solving Bayesian MAB.

4. Incorporating Worker Reliability

In many crowdsourcing applications, it is important
to model worker reliability. Assuming that there are
M workers, we can capture the reliability of the j-th
worker by introducing an extra parameter p; € [0, 1] as
in (Dawid & Skene, 1979; Raykar et al., 2010; Karger
et al., 2012), which is defined as the probability of get-
ting the same label as the one from a random noiseless
(perfectly reliable) worker. Let Y; be the label for the
i-th instance from a random noiseless worker and Z;;
be the label provided by the j-th worker for the i-th
instance. Then p; = Pr(Z;; = Y;|Y;) and

PI‘(ZU = 1|Y; = —1) PI‘(Y; = —1)
=p;ti + (1 — p;)(1 —6;). (13)

This model is often called one-coin model. We note
that the previous simplified model is a special case of
the one-coin model with p; =1 for all j, i.e., assuming
that every worker is perfectly reliable.

We assume that p; is also drawn from a Beta prior
distribution: p; ~ Beta(c},d). At each stage t, we
need to make the decision on both the next instance
i to be labeled and the next worker j to label the
instance ¢ (we omit ¢ in ¢, j here for notation simplic-
ity). In other words, the action space A = {(i,) :

(1,5) e {1,...,K} x {1,...,M}}. Once the decision

is made, we observe the label 1 with the probability
Pr(Zi; = 110;,p5) = Oip; + (1 — 0;)(1 — p;) and —1
with Pr(Z; = —1[6;,p;) = (1 = 0i)p; + 0:(1 — pj),
which is the transition probability. Although the likeli-
hood Pr(Z;; = z|6;, p;) (z € {—1,1}) can be explicitly
written out, the product of the Beta priors of 6; and
p; is no longer the conjugate prior of our likelihood
and we need to approximate posterior distribution. In
particular, we adopt the variational approximation by
assuming the conditional independence of 6; and p;:
p(0i, pj|Zi; = z) = p(0i|Zi; = 2)p(pj|Zi; = z). We
further approximate p(6;|Z;; = z) and p(p;|Z;; = z)
by two Beta distributions whose parameters are com-
puted using the moment matching. Due to the Beta
distribution approximation of p(#;|Z;; = z), the re-
ward function takes a similar form as in the previ-
ous setting and the corresponding approximate policies
(e.g., KG, optimistic KG) can be directly applied. The
detailed derivations and the optimistic KG algorithm
with worker reliability are provided in Appendix.

We can further extend it to a more complex two-coin
model (Dawid & Skene, 1979; Raykar et al., 2010) by
introducing a pair of parameters (pj;1,p;2) to model
the j-th worker’s reliability: p;1 = Pr(Z;; = Y;|Y; = 1)
and P2 = PI‘(Z” = Y;D/,L = —1)

5. Extensions

Our MDP formulation is a general framework to ad-
dress many complex settings of sequential budget allo-
cation problems in crowdsourcing. In particular, when
the feature information x; for each instance ¢ is avail-
able, we could utilize it by assuming 6; = o((w, x;)) =
exp{{w,x;)}
1+exp{(w,x;)}’
N(pg,X0). The posterior p,,; and X1 can be up-

dated using the Laplace method as in Bayesian logistic
regression (Bishop, 2007).

where w is drawn from a Gaussian prior

In multi-class labeling problems, the i-th instance is
associated with a probability vector 8; = (0;1,...6;¢c),
where 6. is the probability that the ¢-th instance be-
longs to the class ¢ and Zlc:1 0;c = 1. By generalizing
Beta distribution to the multivariate case, we assume
that 8; has a Dirichlet prior 8; ~ Dir(a?). Then we
can formulate the problem into a Bayesian MDP and
apply the optimistic KG. We can further use Dirichlet
distribution to model worker reliability as in (Liu &
Wang, 2012). The detailed derivations of these exten-
sions are presented in Appendix.

6. Related Work

To address new challenges in crowdsourcing problems,
many research work has been done. Most of them
are solving a static problem, i.e., inferring true la-



Optimistic Knowledge Gradient Policy for Optimal Budget Allocation in Crowdsourcing

bels and worker reliability based on a static labeled
dataset (Dawid & Skene, 1979; Raykar et al., 2010;
Liu & Wang, 2012; Welinder et al., 2010; Whitehill
et al., 2009; Bachrach et al., 2012; Zhou et al., 2012;
Liu et al., 2012). The first work that incorporates di-
versity of worker reliability is (Dawid & Skene, 1979),
which uses EM to perform the point estimation on
both worker reliability and true class labels. Based on
that, Raykar et al. (2010) extended (Dawid & Skene,
1979) into Bayesian framework and Liu & Wang (2012)
further introduced Dirichlet prior for modeling worker
reliability in multi-class settings. Our work utilizes
the modeling techniques in these two static models as
basic building blocks but extends to dynamic budget
allocation settings.

In recent years, there are several works that have
been devoted into online learning or budget alloca-
tion in crowdsourcing (Karger et al., 2012; Ertekin
et al., 2012; Yan et al., 2011; Pfeiffer et al., 2012).
The method proposed in (Karger et al., 2012) is based
on the one-coin model. In particular, it assigns in-
stances to workers according to a random bipartite
(I,7)-regular graph. Although the error rate method
is proved to achieve the minimax rate, its analysis is
asymptotic and method is not optimal when the bud-
get is limited. For other methods, Pfeiffer et al. (2012)
failed to model the worker reliability in the allocation
process. Yan et al. (2011) required the feature infor-
mation for the decision problem. Basically, none of
the existing methods has characterized the optimal al-
location policy for finite budget.

We also note that the budget allocation in crowdsourc-
ing is fundamentally different from noisy active learn-
ing (Settles, 2009; Nowak, 2009). Active learning usu-
ally does not model the variability of labeling diffi-
culties and assumes a single (noisy) oracle; while in
crowdsourcing, we need to model both labeling dif-
ficulties for instances and different worker reliability.
Secondly, active learning requires the feature vectors
for the decision, which could be unavailable for crowd-
sourcing. Finally, the goal of the active learning is
to label as few instances as possible to learn a good
classifier. In contrast, for budget allocation in crowd-
sourcing, the goal is to infer the true labels for as many
instances as possible.

7. Experiments

We conduct empirical study to compare our optimistic
KG (Opt-KG) policy with several competitors as fol-
lows. For all experiments, we start from the uniform

prior Beta(1,1) = Unif|0, 1] for each 6;.

1. Uniform: Uniform sampling.

2. Gittins: Approximate finite-horizon Gittins in-
dex rule computed using the calibration method
(Nino-Mora, 2011).

3. Gittins-Inf (Xie): Another policy proposed in (Xie
& Frazier, 2012) for solving the infinite-horizon
problem where the reward is discounted by a. Al-
though it solves a different problem, we apply it as
a heuristic by choosing « such that ' =1/(1—«).

4. KG / KG(Random): Deterministic KG or random-
ized KG (Frazier et al., 2008).

5. KOS: The randomized budget allocation algo-
rithm by (Karger et al., 2012). Unlike the orig-
inal algorithm in their paper, we normalized the
messages. Without the normalization, KOS could
preform incredibly poor (Liu et al., 2012).

6. BP: Random sampling with the labeling aggrega-
tion method based on the belief propagation (BP)
in (Liu et al., 2012).

We note that both Gittins and Gittins-Inf polices can
not be applied when the worker reliability is incorpo-
rated as in Section 4.

7.1. Simulated Study

We first test the Opt-KG policy for the basic setting
where labels are aggregated via majority vote without
incorporating worker reliability. In particular, we as-
sume K = 50 and generate 20 different sets of {6;}X ;.
We vary the total budget T' = 2K, 3K, ...,10K, and
report the mean and standard deviation of the accu-
racy over different sets of {6;} in Figure 2(a). The z-
axis is the ratio between the budget T" and the number
of instances K. We note that since each 6; is gener-
ated from uniform prior, the variance of the accuracy
is quite large. For better visualization, the deviation in
Figure 2 is 0.2 standard deviation. For KG policy, we
only plot the accuracy for the randomized policy since
we have proved that the deterministic KG will con-
sistently sample one instance in Proposition 3.1. As
we can see from Figure 2(a), our method and infinite-
horizon Gittins perform better than the other three
policies as the budget level increases. Although the
infinite-horizon Gittins index performs slightly better
than our method, it requires solving a linear system
with O(T?) variables at each stage, which could be
too expensive for large-scale applications. While our
Opt-KG policy has a time complexity linear in KT
and space complexity linear in K, which is much more
efficient when a quick online decision is required.

We also simulate worker reliability p; ~ Beta(4,1) for
7 =1,...,10 and compare different policies in Figure
2(b) over 20 simulations. As we can see, Opt-KG still
performs the best. We also point out that, under the
one-coin model, the deterministic KG policy will no
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Figure 3. Performance comparison on real datasets.

longer only sample one instance as T goes large and
becomes a reasonably good policy.

7.2. Real Data

We compare different policies on a standard real
dataset for recognizing textual entailment (RTE) (Sec-
tion 4.3 in (Snow et al., 2008)). There are 800 in-
stances and each instance is a sentence pair. Each
sentence pair is presented to 10 different workers to
acquire binary choices of whether the second hypoth-
esis sentence can be inferred from the first one. There
are in total 164 different workers. We first consider
our simpler setting without incorporating the diver-
sity of workers. Therefore, once we decide to label an
instance, we randomly choose an worker (who provides
the label in the full dataset) to acquire the label. Due
to this randomness, we run each policy 20 times and
report the errorbar of the accuracy in Figure 3(a). As
we can see, Opt-KG and infinite-horizon Gittins index
policy still perform better than the others. Note that,
different from the simulated study, the deviation in er-
ror bar here is the standard deviation. We omit the
finite-horizon Gittins index rule due to its unaffordable
computational complexity.

When the worker reliability is incorporated, we com-
pare different policies in Figure 3(b). We put
Beta(4,1) prior distribution for each p; which indi-
cates that we have the prior belief that most workers

perform reasonably well and the averaged accuracy is
4/5 = 80%. As we can see, the accuracy of Opt-KG
is much higher than that of other policies when T is
small. It achieves the highest accuracy of 92.25% only
using 40% of the total budget (i.e., on average, each
instance is only labeled by 4 times). Another interest-
ing observation is that when the budget is very large
(e.g., more than 8K), other policies (e.g., KG, Ran-
dom+BP) achieve slightly higher accuracy than Opt-
KG. This is mainly due to the restrictiveness of the
real experimental setting. In particular, since the ex-
periment is conducted on a fixed dataset, the Opt-KG
cannot freely choose instance-worker pairs especially
when the budget goes up (i.e., the action set is greatly
restricted). Comparing Figure 3(b) to 3(a), we also
observe that the Opt-KG policy under the one-coin
model performs much better than the Opt-KG with
the majority vote, which indicates that it is beneficial
to incorporate worker reliability.
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