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Abstract

Considerable progress was recently made on semi-supervised learning, which differs from
the traditional supervised learning by additionally exploring the information of the unla-
beled examples. However, a disadvantage of many existing methods is that it does not
generalize to unseen inputs. This paper suggests a space of basis functions to perform
semi-supervised inductive learning. As a nice property, the proposed method allows effi-
cient training and can easily handle new test points. We validate the method based on
both toy data and real world data sets.

1. Introduction

Recent years have seen considerable attention on semi-supervised learning, which differs
from traditional supervised learning by making use of unlabeled data. In many applications,
like text categorization, collecting labeled examples costs human efforts, while vast amounts
of unlabeled data are often readily available and offer some additional information. This
is the situation, in which semi-supervised learning becomes very useful. In the paradigm,
the function of interest is regularized to be a priori consistent with the inherent structure
of input density p(x). Several advances were recently achieved, like Markov random walks
(Szummer and Jaakkola, 2002), cluster kernels (Chapelle et al., 2003), Gaussian random
fields (Zhu et al., 2003), and regularization on graphs (Belkin and Niyogi, 2003; Zhou et al.,
2004).

So far most of the efforts have been invested in a transductive setting that predicts only
for observed inputs. Yet, in many applications there is a clear need for inductive learning, for
example, in hand-written zip code recognition or in document classification. Unfortunately,
most existing semi-supervised learners do not readily generalize to new test data. A brute
force approach is to incorporate the new test points and re-estimate the function using semi-
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supervised learning, but this is very inefficient. Chapelle et al. (2003) suggest to approximate
new test points with seen data points, which is however an indirect way. Another problem
of semi-supervised transduction is the computational complexity. Since an n × n matrix
needs either to be inverted (Zhu et al., 2003; Zhou et al., 2004) or digitalized (Chapelle
et al., 2003; Belkin and Niyogi, 2003), semi-supervised transduction scaling as O(n3). As
potentially a vast amount of unlabeled points are involved, the computational cost becomes
prohibitive.

This paper extends the approach suggested in (Zhou et al., 2004) to realize a semi-
supervised inductive learning method with m ≤ n finite basis functions (RBF function).
The methods learn a function defined on the whole input space by solving a linear system
of size m (Sec. 2). We then justify the adopted basis function expansion via the view of
learning eigenfunctions. Finally we present results of an empirical study in Sec. 3.

2. Semi-supervised Function Induction

The general supervised learning problem considers a predictive function space H = {f :
X → R} defined on an input space X ⊆ Rd. In order to learn a function f ∈ H based on
training data {xi, yi}l

i=1, where xi are the inputs and yi the measurements of outputs f(xi),
one solves the following problem

f̂ = arg min
f∈H

l∑
i=1

[
yi − f(xi)

]2 + λΩ(f) (1)

where Ω : f → R+∪0 measures the complexity of functions in H. The first term of the cost
function enforces f to explain well the observations. The second term, called the regularizer,
ensures f(x) to be sufficiently smooth, i.e. with low complexity. A common smoothness
assumption behind the regularizer (e.g. in ridge regression and spline interpolation) states
that, similar inputs should have similar function values. This assumption often reflects the
learner’s prior knowledge about what kind of functions are preferred a priori.

2.1 Graph-based Transduction

In the supervised setting, the notion of input similarity is usually independent to the dis-
tribution of input data x. Instead, semi-supervised learning employs a stronger assumption
that there may exist some relationship between the distribution p(x) of inputs and the tar-
get function f . A well-known example is the so called “cluster assumption” (e.g. (Chapelle
et al., 2003)): inputs x in the same cluster are likely to have similar function values f(x).
Therefore, in the situation where labeled data {xi, yi}l

i=1 are limited while vast amount of
unlabeled data {xi}n

i=l exist1, semi-supervised learning employs the input density, explored
from both labeled and unlabeled inputs {xi}n

i=1, as additional knowledge in learning the
input-output relations.

Recently an elegant semi-supervised learning framework was introduced, which explores
the unlabeled data via a similarity graph (e.g. (Zhu et al., 2003; Zhou et al., 2004)). For-
mally, let G(V,E,W) be an undirected and weighted graph, which represents seen inputs xi

1. Without loss of generality, we set the first l data as labeled and the rest n− l inputs unlabeled.
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as vertices vi ∈ V, and the similarities as the weights Wij ∈ W of edges [vi, vj ] ∈ E connect-
ing input pairs (xi,xj), where W can be viewed as an n×n matrix, its entries Wij should be
nonnegative and symmetric (i.e. Wij = Wji), and additionally Wii = 0 (to remove self simi-
larities). In this paper we mainly apply the RBF function Wij = exp(−‖xi−xj‖2/2σ−2). If
only interested in predictions on seen inputs, i.e. vertices V , then one considers a function
space G{f : V → R}, G ⊆ Rn, and solves the following problem

f̂ = arg min
f∈G

l∑
i=1

(yi − fi)2 + λΩ(f) (2)

where f = [f1, . . . , fn]>, fi is the function value on vi, and Ω(f) is a complexity measure of
f , indicating how smooth f is with respect to the somehow the geometric structure of graph
G. One reasonable assumption is that, function values should changes slowly over closely
connected vertices. One way to realize this is to apply the combinatorial Laplacian (Zhu
et al., 2003)

Ωc(f) =
1
2

n∑
i,j=1

Wij(fi − fj)2, (3)

It is easy to see that, penalizing the quantity ensures f to vary slowly between strongly
connected vertices. Another version of the regularizer was adopted in (Zhou et al., 2004):

Ωg(f) =
1
2

n∑
i,j=1

Wij

(
fi√
Di

− fj√
Dj

)2

, (4)

where Di =
∑

j Wij is the degree of vi (analog to the density of xi). This regularizer also
penalizes the functions that change rapidly across nearby vertices, but behaves somehow
different to the former one, due to the normalization by degrees. Let D be the diagonal
matrix with the diagonal entries as vertex degrees. Then it is not difficult to have Ωc =
f>(D−W)f and Ωg = f>(I−D− 1

2 WD− 1
2 )f . In particular, ∆ = I−D− 1

2 WD− 1
2 is called

graph Laplacian in spectral graph theory (Chung, 1997). In this paper, we mainly apply
the regularizer in Eq. (4).

2.2 Inductive Generalization with Basis Functions

The regularization on graphs falls into a transductive setting, since the learned f only
predicts those unlabeled inputs involved as vertices of graph G. However, in practice it is
often required to do induction so that the learned function f : X → R can predict any new
inputs. Therefore, we consider the class of approximating functions to be

f(x) =
m∑

j=1

wjϕj(x) = ϕ(x)>w (5)

where ϕ(x) = [ϕ1(x), . . . , ϕm(x)]> are basis functions, and w = [w1, . . . , wm]> the weights.
In this paper we will only consider RBF basis functions ϕj(x) = exp(−‖x − xj‖2/2σ−2

b ),
xj ∈ {xj}n

j=1, centered on the whole set of seen inputs (then m = n) or a subset (m < n). In

3



general, f can be seen as a form of neural networks with a set of basis functions, meanwhile
it can also be cast as a kernel machine since the basis function applied here are actually
RBF kernels. Now let ϕn ∈ Rm×n be the matrix with {ϕn}ji = ϕj(xi), i.e. basis functions
evaluated on those seen inputs. By plugging f = ϕ>n w into Eq. (2), we obtain a learning
problem with the form

ŵ = arg min
w

l∑
i=1

[
yi − ϕ(xi)>w

]2
+ λw>ϕn∆ϕ>n w. (6)

By setting the derivatives of the cost function with respect to w to be zero, the optimal
weights are estimated by

ŵ = (ϕlϕ
>
l + λΓ)−1ϕlyl, (7)

where Γ = ϕn∆ϕ>n , yl = [y1, . . . , yl]>, and ϕl ∈ Rm×l are the first l columns of ϕn corre-
sponding to responses of basis functions on the labeled data. The approximated function is
then given by

f̂(x) = ϕ(x)>ŵ (8)

The proposed method has certain advantages. First, it builds an inductive learner able
to handle new inputs. The computation for prediction only scales linearly as O(m), while
transduction has to re-compute the predictor whenever new data arrive, which scales as
O(n3) each time. Second, for training the algorithm inverts an m×m matrix ϕlϕ

>
l + λΓ,

which can be much more efficient if m � n. Finally, nonlinear functions can be modeled
since the basis functions are nonlinear.

2.3 Implicit Feature Mapping

It is well-known that the regularization framework for learning can be equivalently explained
by an view of implicit feature mapping (see Girosi et al., 1995). The regularization on graphs
can also be cast in this way, namely, the graph Laplacian induces a set of eigenfunctions
and eigenvalues that project inputs into another vector space and then perform normal
linear least square regression there. Accordingly, the key point to do induction is whether
one can make the feature mappings defined not just on {xi}n

i=1 but the whole input space
X .

Since the system contains m basis functions, there are accordingly m eigenfunctions
φ1(x), . . . , φm(x), and each of them has the form

φk(x) =
m∑
j

wjkϕj(x) = ϕ(x)>wk for k = 1, . . . ,m. (9)

These eigenfunctions should be mutually orthogonal and satisfy
∫

φk(x)2p(x)dx = 1. The
later condition is approximated by empirical averaging on i.i.d. data, giving rise to 1

nφ>k φk =
1, where φk = [φk(x1), . . . , φk(xn)]>. The first eigenfunction should be the one with lowest
complexity, thus its coefficients is obtained by

w1 = arg min
w

w>ϕn∆ϕ>n w, subject to:
1
n
w>ϕnϕ>n w = 1 (10)
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The result is actually independent to the scaling factor 1
n . The objective function at the

optimum gives the corresponding eigenvalue λ1. Though this just solves the first eigen-
function, the optimization problem’s Lagrangian suggests a generalized eigenvalue problem,
whose solutions gives all the eigenfunctions’ coefficients and eigenvalues

(ϕn4ϕn
>)wk = λk(ϕnϕn

>)wk, for k = 1, . . . ,m (11)

Those eigenfunctions present m orthogonal basis functions, corresponding to different levels
of smoothness. Smaller eigenvalues means more smooth. For a function f(x) = ϕ(x)>w,
its complexity is

w>ϕn∆ϕ>n w =
m∑

k=1

λk〈ϕ>n w,φk〉 =
m∑

k=1

λkck

where 〈·, ·〉 is vector inner product. It is clear from above equation that minimizing the
complexity of f enforces f close to the smooth eigenfunctions (i.e. those with smaller eigen-
values) as much as possible.

3. Empirical Study

3.1 Toy Data

We test the proposed algorithms on the two-moon toy problem (Zhou et al., 2004). As shown
in Fig. 1, 120 inputs are generated from two underlaying classes and each class has only one
labeled example. The performance of transduction has been shown in (Zhou et al., 2004),
which predicts for only seen inputs. In contrast, the induction learns a function defined in
the whole space and gives a classification boundary. We also estimate the eigenfunctions
based on the two-moon data, using 120 RBF basis functions, and illustrate the 6 smoothest
ones in Fig. 2. The eigenfunctions expose the the structure of input density in different
resolutions, i.e. the first eigenfunction reflects the density of inputs, the second one exactly
reflects the two different classes, the third one describes the isolated “island” in the density,
and the following ones indicate more details, behaving like the Fourier transformation to
describe signals in different frequency bands.

3.2 Digit Recognition

We test the performance of algorithms in a digit recognition task based on the USPS
benchmark. We follow the setting in (Zhou et al., 2004) and pick up the digits 1, 2, 3, and
4, with a total of 3874 examples. As comparison, we also test support vector machines, as
the baseline, and semi-supervised transduction described by (Zhou et al., 2004). We test
induction learners with randomly selected m inputs to form RBF basis functions, where
m is 100%, or 10% of seen inputs. The parameter λ in Eq. (6) is set to be 100, which
corresponds to w = 0.99 in (Zhou et al., 2004). We split the data into seen (including
labeled and unlabeled data) and unseen sets, 90% vs. 10%, and examine the predictive
accuracy on the unseen set given a number of labeled examples in the seen set. For the
transductive learner, each time we have to include one test point into the affinity matrix
and then predict its label. Note it is unfair to include the whole “unseen” sets (to make
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Figure 1: Semi-supervised induction on the two-moon data. Top:, each class has only one
labeled example; Bottom, induction with 120 basis functions, the black bold curve
gives the classification boundary and the gray level indicates the function value.
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Figure 2: The six eigenfunctions with smallest eigenvalues, estimated with 120 basis func-
tions. The eigenfunctions not only expose the structure of input density, but also
help to understand semi-supervised learning: choosing the smooth eigenfunctions
that also explain the labeled examples well, which gives the second eigenfunction
in the case shown in Fig. 1.
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Figure 3: Left panel: Test results for digit recognition based on USPS data. Right panel:
Test results for text categorization based on 20-newsgroup data.

computation cheaper) because then transduction has a much larger affinity matrix than
induction. The setting makes the test computationally expensive, but highlights the point
that induction can cheaply handle new test points. We repeat all the tests for 50 times,
i.e. each time a different seen/unseen split and a different random set of m seen inputs for
basis functions. As shown in Fig. 3-(a), the induction taking the whole seen set as basis
functions gives the accuracy almost as excellent as transduction. The functions formed by
10% basis functions perform a bit worse than the tranductive learner but still much better
than SVMs, and is computationally much cheaper than the transduction.

3.3 Text Categorization

In this experiment we test the algorithms for text categorization based on the 20-newsgroup
data set. We take the same setting as in (Zhou et al., 2004), i.e. choosing the four topics
autos, motorcycles, baseball and hockey and taking the same preprocessing steps to finally
get 3970 TFIDF vectors. The distance between documents d(xi,xj) = 1−〈xi,xj〉/‖xi‖‖xj‖
is applied to form RBF functions for affinity matrix (with width 0.15), basis functions for
induction (width 0.15) (Zhou et al., 2004). We then perform 50 trials with random 90% seen
and 10% unseen split and report the average performance of each algorithm in Fig. 3-(b).
We find that the induction with basis functions formed by 100% seen inputs (m=3573)
performs very closely to the transduction learner. The computationally cheaper inductive
learner with m = 357 basis functions trades off the accuracy, but still outperforms SVMs.

4. Conclusion

This paper realizes a semi-supervised inductive algorithm by extending previous graph-
based transductive approaches. The idea is to use basis function expansion to form a
regularizer induced by the normalized graph Laplacian. Finally the effectiveness of the
proposed algorithm is illustrated on both toy problem and digit recognition. In the near
future it is interesting to identify the optimal set of basis functions in this framework.
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