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Machine learning + crowdsourcing 

• Almost all machine learning applications need 
training labels 

• By crowdsourcing we can obtain many labels 
in a short time at very low cost
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Repeated labeling: Orange (O) vs. Mandarin (M)
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How to make assumptions? 

• Intuitively, label quality depends on worker 
ability and item difficulty. But,  

– How to measure worker ability?  

– How to measure item difficulty?  

– How to combine worker ability and item difficulty? 

– How to infer worker ability and item difficulty? 

– How to infer ground truth? 
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A single assumption for all questions

Our assumption: measurement objectivity

A B2

Invariance: No matter which scale, A is twice larger than B
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A single assumption for all questions

Our assumption: measurement objectivity

2

How to formulate invariance for mental measuring? 

A B
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A single assumption for all questions

Our assumption: measurement objectivity

2

𝑅𝐴: number of right answers
𝑊𝐴: number of wrong answers

A B

Assume a set ℵ of equally difficult questions: 
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A single assumption for all questions

Our assumption: measurement objectivity

2

𝑅′𝐴: number of right answers
𝑊′𝐴: number of wrong answers

A B

Assume another set ℵ′ of equally difficult questions: 
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A single assumption for all questions

Our assumption: measurement objectivity

2A B
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A single assumption for all questions

Our assumption: measurement objectivity

2A B

For multiclass labeling, we count the number of
misclassifications from one class to another
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Measurement objectivity assumption 
leads to a unique model!

𝑃 𝑋𝑖𝑗 = 𝑘 𝑌𝑗 = 𝑐 =
1

𝑍
exp[𝜎𝑖 𝑐, 𝑘 + 𝜏𝑗 𝑐, 𝑘 ]

worker 𝑖, item 𝑗
labels 𝑐, 𝑘

data matrix 𝑋𝑖𝑗
true label 𝑌𝑗

worker confusion matrix item confusion matrix
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Estimation procedure

• First, estimate the worker and item confusion 
matrices by maximizing marginal likelihood 

• Then, estimate the labels by using Bayes’ rule with 
the estimated confusion matrices

Two steps can be seamlessly unified in EM!
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Expectation-Maximization (EM)

• Initialize label estimates via majority vote 

• Iterate till converge: 

– Given the estimates of labels, estimate worker and 
item confusion matrices 

– Given the estimates of worker and item confusion 
matrices, estimate labels
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Prevent overfitting

• Equivalently formulate our solution into 
minimax conditional entropy 

• Prevent overfitting by a natural regularization  
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Minimax conditional entropy 

• True label distribution: 𝑄(𝑌)

• Define two 4-dim tensors

– Empirical confusion tensor 

– Expected confusion tensor
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Minimax conditional entropy 

• Jointly estimate 𝑃 and 𝑄 by 

subject to
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Minimax conditional entropy 

• Exactly recover the previous model via the 
dual of maximum entropy 

𝑃 𝑋𝑖𝑗 = 𝑘 𝑌𝑗 = 𝑐 =
1

𝑍
exp[𝜎𝑖 𝑐, 𝑘 + 𝜏𝑗 𝑐, 𝑘 ]

• Estimate true labels by minimizing maximum 
entropy (= maximizing likelihood)

Nothing but Lagrangian multipliers!
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Regularization

• Move from exact matching to approximate 
matching:
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Regularization

• Move from exact matching to approximate 
matching:

• Penalize large fluctuations: 
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Experimental results 

• Bluebirds data (error rates) 

o Belief propagation: Variational Inference for Crowdsourcing (Liu et al. NIPS 2013)
o Other methods in the literature cannot outperform Dawid & Skene (1979)
o Some are even worse than majority voting 
o Data: The multidimensional wisdom of crowds (Welinder et al, NIPS 2010)

12/9/2013 NIPS 2013 Workshop on Crowdsourcing 24



Experimental results 

• Web search data (error rates)

o Latent trait analysis code from: http://www.machinedlearnings.com
o Data: Learning from the wisdom of crowds by minimax entropy (Zhou et al., NIPS 2012) 
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Crowdsourced ordinal labeling 

• Ordinal labels: web search, product rating 

• Our assumption: adjacency confusability 

1

2

3

4

5

likely to confuse 

unlikely to confuse 
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Ordinal minimax conditional entropy

• Minimax conditional entropy with the ordinal-
based worker and item constraints: 

for all Δ and 𝛻 taking values from {≥,<}
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Constraints: indirect label comparison
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Ordinal labeling model 

• Obtain the same model except confusion 
matrices are subtly structured by  

• Fewer parameter, less model complexity
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Experimental results

Web search data

o Latent trait analysis code from: http://www.machinedlearnings.com
o Entropy(M): regularized minimax conditional entropy for multiclass labels
o Entropy(O):  regularized minimax conditional entropy for ordinal labels
o Data: Learning from the wisdom of crowds by minimax entropy (Zhou et al., NIPS 2012) 
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Experimental results

Price estimation data

o Latent trait analysis code from: http://www.machinedlearnings.com
o Entropy(M): regularized minimax conditional entropy for multiclass labels
o Entropy(O):  regularized minimax conditional entropy for ordinal labels
o Data: 7 price ranges from least expensive to most expensive (Liu et al. NIPS 13)
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Why latent trait model doesn’t work? 

ordinal label = score range
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When solving a given problem try to avoid solving a more 
general problem as an intermediate step. 

-Vladimir Vapnik



Error bounds: problem setup

• Observed Data:

• Unknown true labels:

• Unknown workers’ accuracies:

• Simplified model of Dawid and Skene (1979) 
and minimax conditional entropy 
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Dawid-Skene estimator (1979)

• Complete likelihood:

• Marginal likelihood:

• Estimating workers’ accuracy by

• Estimating true labels by (plug-in)
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Theorem (lower bound)

For any estimator, there exists a least favorable      

(parameter space) 
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Theorem (upper bound)

Under mild assumptions, Dawid-Skene estimator 
is optimal in Wald’s sense
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Budget-optimal crowdsourcing 

We propose the following formulation: 

• Given 𝑛 biased coins, we want to know which are 
biased to heads and which are biased to tails 

• We have a budget of tossing 𝑚 times in total 

• Our goal is to maximize the accuracy of prediction 
based on observed tossing outcomes 

Optimistic Knowledge Gradient Policy for Optimal Budget Allocation in 
Crowdsourcing (Chen et al, ICML 2013)
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Summary 

Measurement Objectivity

Maximum Likelihood

Maximum Conditional Entropy

Minimum Conditional Entropy

Minimax Conditional Entropy

Regularized Minimax Conditional Entropy

Minimax optimal rates Budget-optimal crowdsourcing
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